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Appendix

November 26, 2017

Question 3 (Neural Network Training): The Neural Net-
work formulation for assignment 4 has caused some confusions. There were
a few typos that are highlighted here in red. We also use some more detailed
equations that might be helpful to follow the flow of error backpropagation.
It is very similar to the variables used in the textbook and the course slides.
The variable names in the code are slightly different, which is part of the
assignment to solve. To get more details, you can read chapter 5.3 of Bishop
book.

Figure 1: A single neuron in our neural network. It shows activation variable
ak and output zk for node k. Weights wkj is the weight for the node k from
the node j in previous level. We also used wj→k for this in the assignment
description.
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Figure 2: The Neural Network model in Question 3. There are (D = 784)
input nodes, (H = 500) hidden nodes, and (K = 10) output nodes. The
weights between ith input node and jth hidden node is weights[[1]][j,i],
and between jth hidden node and kth output node is weights[[2]][k,j].
The activation value for nth node at mth layer is a[[m]][n], i.e. a[[1]] is
the input layer and a[[3]] is the output layer.

The structure of each neurons is shown in Figure 1. Figure 2 shows the full
structure of our neural network. We use super-index to show the level. For
example, for the kth node in the input layer, we use x

(0)
t , a

(1)
i , and z

(1)
i for the

input, activation, and the output values. We assume that z
(1)
i = a

(1)
i = x

(0)
i ,

i.e. the input layer is just assigning a node to each input variable. Since the
network is connected, x from each level is connected to z from the previous
level; e.g. x

(2)
j = z

(2)
j . So, using Equation 5.43 from the Bishop book:

∂

∂w
(2)
j→k

En =
∂
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kj

En = δ
(2)
k x

(2)
j = (yk − tk)x

(2)
j (1)
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= (yk − tk)z
(2)
j (2)

In other words, the partial derivative of the error with respect to weight w
(2)
kj ,

for input j of node k in the output layer is the delta between the predicted
and the real output, times the jth input of the node, which is equivalent to
the output of the node j from the hidden layer. The same rule applies to the
previous level:

∂

∂w
(1)
i→j

En = δ
(1)
j x

(1)
i = δ

(1)
j z

(1)
i (3)

δ
(1)
j = g′(a

(1)
j ).

∑
k

w
(2)
kj δ

(2)
k (4)

Note that the notations are a little different in the source code. Variable
a is used to show the output values instead of the activation values. Also,
a[1] represents the input data and a[3] represents the output of the network,
as shown in Figure 2.
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