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Abstract

The shape-from-focus method described in this paper
uses different focus levels to obtain a sequence of object
images. The sum-modified-Laplacian (SML) operator is de-
veloped to provide local measures of the quality of image
focus. The operator is applied to the image sequence of the
object to determine a set of focus measures at each image
point. A model is developed to describe the variation of fo-
cus measure values due to defocusing. This model is used by
a depth estimation algorithm to interpolate focus measure
values and obtain accurate depth estimates. We conclude
with a description of a fully automated system that has
been implemented using an optical microscope and tested
on a variety of industrial samples.

1 Introduction

All surfaces encountered in practice are rough at some level
detail. At that level, they exhibit high-frequency spatial
surface variations that are often random in nature. In many
vision applications, the spatial surface variations are com-
parable in dimensions to the resolution of the imaging sys-
tem. Image intensities produced by such surfaces vary in
an unpredictable manner from one sensor element (pixel) to
the next. Hence, it is difficult to obtain dense and accurate
surface shape information by using existing passive or active
sensing techniques such as stereo, shape from shading, and
structured light. Therefore, a practical and reliable solu-
tion to this rather difficult extraction problem is desirable.
In this paper, we develop a shape extraction technique that
uses focus analysis to recover dense depth maps of surfaces
with complex reflectance and roughness properties.

1.1 Background

Previously, focus analysis has been used to automatically
focus imaging systems or to obtain sparse depth informa-
tion from the observed scene. Horn [1} proposed focusing
imaging systems by using the Fourier transform and an-
alyzing the frequency spectrum of the image. Tenenbaum
[2] developed the gradient magnitude maximization method
that uses the sharpness of edges to optimize focus quality. A
modification to this approach was later proposed by Jarvis
[3]. Jarvis formulated the sum-modulus-difference as the
sum of the first intensity differences between neighboring
pixels along a scan-line and used it as a measure of focus
quality. Several auto-focusing algorithms were implemented
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and tested by Schlag et.al. [4].

More recently, Krotkov [5] evaluated and compared the
performance of different focus criterion functions. Krotkov
also proposed a method to estimate the depth of an image
area. Pentland [6] suggested estimating the depth of im-
age points by evaluating image blur due to defocusing. A
similar approach was applied to edge points by Grossmann
[7]. Darrell and Wohn [8] have developed a depth from
focus method that obtains an image sequence of a scene
by varying the focus level, and uses Laplacian and Gaus-
sian pyramids to calculate depth. Subbarao [9] suggests the
change of intrinsic camera parameters to recover the depth
map of a scene.

1.2 Shape from Focus

In this paper, we develop a shape-from-focus method. In
contrast to previous work in this area, we avoid the follow-
ing approaches.

¢ We do not attempt to estimate depth from a pair of
images by evaluating local estimates of the blurring
function. The accuracy of such a method is greatly
dependent on the blurring model used. The models
used thus far are only approximations to the actual
physical-optics model and therefore do not ensure high
quality results.

We do not apply our method to general scenes. Depth
estimation based on focus analysis relies on the pres-
ence of high frequency brightness variation in the
scene. General scenes often have areas with little or no
brightness variation. For this reason, experiments in
the past have only produced sparse depth information.

Here, we restrict ourselves to visibly rough surfaces that
produce images with high frequency intensity variations.
We review the image formation process and show that a
defocused imaging system plays the role of a low-pass filter.
The shape-from-focus method moves the unknown object
with respect to the imaging system and obtains a sequence
of images that correspond to different levels of object focus.
The sum-modified-Laplacian (SML) operator is developed
to measure the relative degree of focus between images. The
operator is applied to the image sequence to obtain a set of
focus measures at each image point. A model is developed
that describes focus measure variations due to defocusing.
This model is used to interpolate between a few focus mea-
sures to obtain accurate depth estimates.



We have implemented a fully automated shape-from-
focus system for inspecting microscopic objects that are
upto a hundered microns in size. A motorized optical mi-
croscope is used to obtain a sequence of object images. Two
results are produced by the recovery algorithm. The first is
a focused image of the object that is reconstructed from the
sequence of partially focused images. The second is a depth
map of the object surface. The automated system has been
applied to a variety of industrial samples. The results in-
dicate that the method is capable of extracting dense and
accurate shape information from a small number of object
images.

2 Visibly Rough Surfaces

In the study of reflection, a rough surface is defined as one
whose smallest spatial variations have dimensions that are
much larger than the wavelength of the incident electro-
magnetic waves. This is the concept of optical roughness.
In this paper, we introduce the notion of visible roughness;
a surface is visibly rough if the dimensions of its spatial
variations are comparable to the viewing area of individ-
ual elements (e.g. pixels) of the sensor (e.g. camera) used
to observe the surface. The surface shown in Fig.1 is com-
prised of a large number of facets While the surface appears
to have a smoothly varying global shape, z(z, y), the orien-
tation a of individual facets may deviate considerably from
the mean surface orientation in the facet vicinity. Although
facet orientations are dependent on the global shape of the
surface and on the orientations of neighboring facets, they
often exhibit some degree of randomness.

Figure 1: Surface roughness and sensor resolution.

Now, consider the image of a rough surface obtained us-
ing a finite resolution sensor. If the pixel width w is com-
parable to the facet width wy, only one or few facets are
viewed by each pixel. As a result of the randomness in
facet orientations, image intensity values vary drastically
and unpredictably from one pixel to the next. This is true
for facets that are specular or diffuse in reflectance; the facet
radiance in both cases is dependent on the angle of incident
light. The surface therefore produces images that are rich
in texture! and we say that the surface is visibly rough.

1The textures produced by visibly rough surfaces may be pe-
riodic, nearly periodic, or random. No assumptions are made
regarding the type of texture.
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3 Focused and Defocused Images

In this section, we briefly review the image formation pro-
cess and describe defocused images as processed versions of
focused images. Fig.2 shows the basic image formation ge-
ometry. All light rays that are radiated by the object point
P and intercepted by the lens are refracted by the lens to
converge at the point Q on the image plane. The relation-
ship between the object distance o, focal distance of the
lens f, and the image distance i, is given by the Gaussian
lens law:
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Figure 2: Formation of focused and defocused images.

Each point on the object plane is projected onto a single
point on the image plane, thus causing a clear or focused
image I¢(z,y) to be formed on the image plane. If, however,
the sensor plane does not coincide with the image plane and
is displaced from it by a distance 8, the energy received from
the object by the lens is distributed over a circular® patch
on the sensor plane. Fig.2 may be used to establish the
relationship between the radius r of the circular patch and
the sensor displacement §. From Fig.2 we find that: '
SR

- (2
where R is the radius of the lens. It is also possible to
convince oneself that the radius r of the circular patch is
independent of P’s location on the object plane. The distri-
bution of light energy over the circular patch, or the blurring
function, can be modeled using physical optics [6]. Very
often, a two-dimensional Gaussian function is used to ap-
proximate the physical model [6] [9]. Then, the blurred or
defocused image I 4(z,y) formed on the sensor plane can
be described as the result of convolving the focused image
I¢(z,y) with the blurring function h(z,y):

La(z,y) = h(z,y) * If(z,y)

where:
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2The shape of the patch also depends on the shape of the
aperture of the imaging system. We are assuming the aperture
to be circular.

h(z,y) = e




where o, the spread parameter, is assumed to be propor-
tional to the radius r [6]. The constant of proportionality is
dependent on the optics, sampling, etc. We will see shortly
that the value of this constant is not important in our ap-
proach. Note that defocusing is observed for both positive
and negative sensor displacements.

Now let us analyze the defocusing process in the fre-
quency domain (u,v). If Ip(u,v), H(u,v), and Ip(u,v)
are the Fourier transforms of I¢(x,y), h(z,y), and I 4(z,y),
respectively, we can express eq. 3 as:

Ip(u,v) = H(u,v).Ip(u,v) (5)

where:
2,42
H(u,v) = e~ 0n" (6)

We see that H(u,v) allows low frequencies to pass while it
attenuates the high frequencies in the focused image. Fur-
thermore, as the sensor displacement § increases, the de-
focusing radius r increases, and the spread parameter oy
increases. Hence defocusing is a low-pass filtering process
where the bandwidth decreases with increase in defocusing.

From Fig.2, it is seen that a defocused image of the ob-
ject can be obtained in three ways: by displacing the sensor
with respect to the image plane, by moving the lens, or by
moving the object with respect to the object plane. Moving
the lens or sensor plane with respect to one another causes
the following problems: (a) The magnification of the sys-
tem varies, causing the image coordinates of focused points
on the object to change, and (b) the area on the sensor
plane over which light energy is distributed varies, causing
a variation in image brightness. These effects are described
in detail by Willson and Shafer [12]. In order to overcome
these problems, we propose to vary the degree of focus by
moving the object® with respect to a fixed configuration of
the optical system and sensor. This approach ensures that,
as the object moves, the magnification of imaging system
is constant for the image areas that are perfectly focused.
We further assume that the magnification remains constant
for image areas that are marginally defocused. A more de-
tailed analysis of this assumption is provided in [10]. This
assumption will be used later while developing the depth
estimation algorithm.

4 Shape from Focus: An Overview

Fig.3 shows an object of unknown shape placed on a transla-
tional stage. The reference plane shown corresponds to the
initial position of the stage. The configuration of the optics
and sensor defines a single plane, the *focused plane*,” that
is perfectly focused onto the sensor plane. The distance df
between the focused and reference planes, and the displace-
ment d of the stage with respect to the reference plane, are
always known by measurement. Consider the surface ele-
ment, s, that lies on the object surface, S. If the stage is

30Object movement is easily realized in industrial and medical
applications.

4The focused plane is the same as the object plane defined in
the previous section. A different term is introduced here as the
object does not necessarily lie on the focused plane.
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moved towards the focused plane, the image of s will gradu-
ally increase in its degree of focus (high frequency content)
and will be perfectly focused when s lies on the focused
plane. Further movement of the element s will again in-
crease the defocusing of its image. If we observe the image
area corresponding to ¢ and record the stage displacement
d = d at the instant of maximum focus, we can compute
the height ds of s with respect to the stage as ds = dy - d.
In fact, we can use d to determine the distance of s from the
focused plane, sensor plane, or any other coordinate system
defined with respect to the imaging system. This proce-
dure may be applied independently to all surface elements
to obtain the shape of the entire surface S.

sensor plane

e —

surface element

focused plane

surface

ional stage

Figure 3: Shape from focus.

To automatically detect the instant of *best” focus, we
will develop an image focus measure. In the above discus-
sion, the stage motion and image acquisition were assumed
to be continuous processes. In practice, however, it is not
feasible to acquire and process such a large number of im-
ages in a reasonable amount of time. Therefore, we obtain
only a finite number of images; the stage is moved in incre-
ments of Ad, and an image is obtained at each stage po-
sition (d = n.Ad). By studying the behavior of the focus
measure, we develop an interpolation method that uses a
small number of focus measures to compute accurate depth
estimates.

5 A Focus Measure Operator

A few focus measure operators have been proposed and used
in the past [5]. Generally, the objective has been to find an
operator that behaves in a stable and robust manner over
a variety of images such as images of indoor and outdoor
scenes. Such an approach is essential while developing au-



tomatically focusing imaging systems that have to deal with
general scenes. Bearing in mind that we are dealing with
textured images, we develop an operator that is particularly
well-suited to such images.

An interesting observation can be made regarding the ap-
plication of focus measure operators. Eq. 3 relates a defo-
cused image to a focused image using the blurring function.
Assume that a focus measure operator o{z,y) is applied (by
convolution) to the defocused image I4(z,y). The result is
a new image r(z,y) that may be expressed as:

r(z,y) = o(z,y) * (h(z,y) * If(z,y)) (7

Since convolution is a linear operation, we can rewrite the
above expression as:

r(z,y) = Mazy) * (o(z,y) * Is(=,y)) (8)

Therefore, applying a focus measure operator to a defocused
image is equivalent to defocusing a new image obtained by
convolving the focused image with the focus measure opera-
tor. The focus measure operator only selects the frequencies
in the focused image that will be attenuated due to defo-
cusing. Since defocusing is a low-pass filtering process, its
effects on the image are more pronounced and detectable if
the image has strong high frequency content. An effective
focus measure operator, therefore, must high-pass filter the
image.

One way to high-pass filter an image is to determine its
second derivative. For two-dimensional images, the Lapla-
cian may be used:
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where I(z,y) is the image intensity at the point (z,y). In
frequency domain, applying the Laplacian L(u,v) to the
defocused image Ip(u,v) (eq. 5) gives:

L(u,v).H(u,v).Ip(u,v) (10)

where:
L(i‘,v).H(u,v) = —(u2 + vz).e-ﬁ;v_z&hz (11)

For any given frequency (u,v), | L. H | varies as a Gaus-
sian function of the defocusing parameter o;,. In general,
however, the result would depend on the frequency distri-
bution of the imaged scene. Though our texture is random,
it may be assumed to have a set of dominant frequencies.
Then, loosely speaking, each frequency is attenuated by a
Gaussian function in o5 and its width is determined by the
frequency. Therefore, the result of applying the Laplacian
operator may be expressed as a sum of Gaussian functions
in 0. The result is expected to be maximum when o5 =
0, i.e. when the image is perfectly focused. Since the fre-
quency distribution of the texture is random, the widths of
the Gaussian functions are also random. Using the central
limit theorem, the result of applying the Laplacian operator
to an image point may be assumed to be a Gaussian func-
tion of the defocusing parameter op. This general behavior

is expected irrespective of the focus measure operator used
(see [5], [10]).

In the context of textured images, the Laplacian poses
a problem as a focus measure operator. Note that in the
case of the Laplacian the second derivatives in the z and y
directions can have opposite signs and tend to cancel each
other. In the case of textured images, similar instances may
occur frequently and the Laplacian may at times behave in
a unstable manner. We overcome this problem by defining
the modified Laplacian as:

2 2
2 o~1 0~1
vinl =5z 5 (12)

Note that the modified Laplacian is always greater or equal
in magnitude to the Laplacian.

The discrete approximation to the Laplacian is usually a
3x3 operator. In order to accommodate for possible varia-
tions in the size of texture elements, we compute the partial
derivatives by using a variable spacing (step) between the
pixels used to compute the derivatives. Hence, the discrete
approximation to the modified Laplacian is computed as:

ML(z,y) = (13)
|  2I(z,y) — I(z — step,y) — I(z + step,y) |
+ | 2(a,y) - L5,y step) — I(z,y +step)

Finally, the focus measure at a point (i,f) is computed as
the sum of modified Laplacian values, in a small window
around (4,5), that are greater than a threshold value:

i+N  J+N
Fi)= 3, 3, Ml(ay) for ML(z,y) 2 T1(14)
z=i-N y=j-—N

where the parameter N determines the window size used
to compute the focus measure. In contrast to auto-focusing
methods, we typically use a small window of size 3x3 or
5x5,i.e. N =1o0r N = 2. We shall refer to the above focus
measure as the sum-modified- Laplacian (SML). Note that as
a result of definition of the modified Laplacian and the use
of the threshold T, the SML is not a linear operator and
cannot be implement as a convolution. However, the SML
can be computed using a simple algorithm.

6 Focus Measure Function

The focus measure function at any given image point may
be denoted by F(d); SML focus measure as a function of
the distance of the corresponding surface point from the
focused plane (Fig.3). From section 3, we know that peak
of F(d) can be modeled as a Gaussian function® with mean
value d and standard deviation op (Fig.4). This is also
experimentally verified in [10]. The mean d corresponds
to the stage displacement at which F(d) is maximum, i.e.

5In general, the fringes of the focus measure function deviate
from the Gaussian distribution since the magnification of the
imaging system can vary substantially from one fringe to the
other [10]. For this reason, we confine ourselves to variations
around the peak.
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F(d) = Fyp. As the texture content on the surface element
increases, Fp increases and op decreases. Each surface
element, therefore, is expected to have its own Fyp and op
values.

The Gaussian model enables us to compute depth from a
small number of focus measures by interpolation. We show
in the following section that a minimum of three focus mea-
sures are needed perform the Gaussian interpolation. Since
the Gaussian model is valid only in the peak region of F(d),
these three focus measures must be computed in this region.
In our experiments, we select the displacement parameter
Ad such that the above condition is always satisfied.

7 Depth Estimation

We now describe the estimation of depth of a surface point
(z,y) from the focus measure set {F(d;) | i=1,2,...M}
computed at (z,y). The parameter d represents the depth
of the surface point. For convenience the notation F; is
used to represent the focus measure value F(d;).

The depth estimation algorithm uses the Gaussian distri-
bution to model the peak region of the focus measure func-
tion F(d) and interpolates the computed measure values to
obtain accurate depth estimates. The algorithm uses only
three focus measures, namely, Fp,_;, F, and Frmy1, that
lie on the largest mode® of F(d), such that, Fp, > Foeg
and Fm > Fpyy (Fig4).

F
Foea t""""‘,ﬂ'\ Fo
o
S P\‘
o ¥
Fm-l ) ‘\
/ Lo
/ —= \
/ ' \
! \
! \
'
f A}
1 \
: \Fnut
) \
1 ‘.
1 Ad
| -
1
1
!
)
d »d
dm1 g dp Amal

Figure 4: Gaussian interpolation of focus measures.

Using the Gaussian model, the focus measure function
may be expressed as:
) 2 }

F = Fp exp {—-;—(

where d and o are the mean and standard deviation of the
Gaussian distribution (Fig.4). Using natural logarithm, we

d-1d
oF

(15)

$Due to image noise and variations in magnification, the focus
measure function may be multi-modal with one strong peak and
one or more weak ones.

oF

306

can rewrite eq. 15 as:
=\ 2

d—d

) (16)

oF

By substituting each of the three measures Fy, _;, F, and
Finyt1, and its corresponding displacement value in eq. 16,
we obtain three equations that can be solved for d and op:

d (17)

InF = InFp - %(

(InFm ~nFpy ) (dm® — dp_s?)
2Ad{(InFm — InFpm_) + (InFm — InFruyg)}

~ (InFm — nFp_g)(dm? — dmy1?)
2Ad{(InFm - InFm_I) + (InFm - InFm+1)}

(dm® = dm_1?) + (dm?® = dmys?)

2 - _ (
2 Fm = Fm1) ¥ (nFm = WPy )7 00
Using eq.15, we can find Fp from or and d as:
- 2
Fp = Fm/exp {—-l-(——dm — d) } (19)
2 oF

If Fp is large and op is small, the focus measure function
has a strong peak, indicating high surface texture content
in the vicinity of the image point (z,y). Hence, the values
of Fp and gp can be used to segment the observed scene
into regions of different texture content.

The following algorithm first finds the measures Fy,_;,
Fm, and Fy, 4 that correspond to the strongest peak of
F(d), and then uses these measures to estimate the depth
d by Gaussian interpolation.

Algorithmm

Step 1: Let k = 3, Fpy_; =0, Fry = 0, Fri1=0,dn
=0.

Step2: f Fy_y > Fmm , Fr_g >Fg,and Fp_; > Fy_g,
then:

szFk-I
Foo1=Fr_p
Foyr = Fg
dm = dy_g

Step 3: If k < M, k =k + 1, go to step 2.

Step 4:_dm_1 =dm — Adand dpyy = dm + Ad. De-
termine d, o p, and Fy using Egs. 17, 18, and 19.

Step 5: If Fp < T3 or op > Ty, the image point (z,y)
belongs to background. Stop.

Since the values of Fp and o are only useful for texture
segmentation, their evaluation may be avoided to save com-
putations. The algorithm may be applied either in parallel
or sequentially to all image points to obtain a dense depth
map of the object.

8 An Automated System

We have implemented a fully automated shape from focus
system for the recovery of microscopic objects. A photo-
graph of the system is shown in Fig.5. A Nikon Alphaphot-
2 model microscope is used to image the objects. Objects



can be magnified using objective lenses with x10, x40, and
%100 magnification. The object is illuminated using bright
field illumination where light energy is focused on the ob-
ject by the same lenses that are used to magnify the object.
A CCD camera with 512x512 pixels is mounted on the mi-
croscope to obtain digital images of the object. The z-axis
of the microscope stage is driven by a stepper motor and
the position of the stage can be computer controlled with a
resolution and accuracy of 0.02 pm. The shape from focus
algorithm is programmed and executed on a Sun SPARC 2
workstation.

Figure 5: Automated shape from focus system.

The object is placed on the microscope stage and the ap-
propriate objective lens is used to magnify the object. The
focus measure parameters (T'; and step) and the stage dis-
placement (Ad) are provided to the program. The program
then automatically increments the stage position, digitizes
and stores an image for each new position, and uses the
image sequence to compute a depth map of the object. The
program also reconstructs a focused image of the object
from the sequence of defocused images. The reconstruction
algorithm uses the estimated depth map to locate and patch
together the best focused image areas in image sequence.

The automated system has been used to recover the
shapes of a variety of industrial samples. Fig.6 shows a
tungsten paste filling in a via-hole on a ceramic substrate
[11). The filling is used to establish electrical connections
between different components on a circuit board. The via-
hole shown in Fig.6 is approximately 70 um in diameter
and is not sufficiently filled with tungsten paste. A total of
18 images of the via-hole were obtained using stage posi-
tion increments of 4m. Some of these images are shown in
Fig.6(a-f). The specular reflectance and variable size of the
tungsten particles gives the surface a random texture. The
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white background is the substrate area that has weak tex-
ture. Fig.6(g) and Fig.6(h) show the reconstructed image
and two views of a depth map obtained using the Gaussian
interpolation algorithm.

The above result as well as several other results [10] show
that the Gaussian interpolation algorithm performs stably
over a wide range of textures. In [10], we have included a
quantitative analysis of the errors in computed depth. The
automated system is currently being used to compute depth
maps and focused images of a variety of industrial as well
as medical samples.

Acknowledgements

The author would like to thank Yasuo Nakagawa of
PERL, Hitachi, and Reg Willson of the VASC Group, CMU,
for several discussions and valuable comments. The author
also thanks Ushir Shah for his contribution to the imple-
mentation of the automated system.

References

[1] B.K.P. Horn, Focusing, MIT Artificial Intelligence
Laboratory, Memo No. 160, May, 1968.

J.M. Tenenbaum, Accommodation in Computer Vi-
sion, Ph.D. Thesis, Stanford University, 1970.

R.A. Jarvis, Focus optimization criteria for computer
image processing, Microscope, Vol. 24, No. 2, pp. 163-
180, 1976.

J.F. Schlag, A.C. Sanderson, C.P. Neu-
mann, F.C. Wimberly, Implementation of automatic
focusing algorithms for a computer vision system with
camera control, Carnegie Mellon University, CMU-RI-
TR-83-14, August, 1983.

E. Krotkov, Focusing, International Journal of Com-
puter Vision, Vol. 1, pp. 223-237, 1987.

A. Pentland, A New Sense for Depth of Field, IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, Vol. 9, No. 4, pp. 523-531, July 1987.

P. Grossmann, Depth from Focus, Pattern Recogni-
tion Letters, Vol. 5, pp. 63-69, 1987.

T. Darrell and XK. Wohn, Pyramid Based Depth from
Focus, Proc. CVPR, pp. 504-509, 1988.

M. Subbarao, Efficient Depth Recovery through Inverse
Optics, Machine Vision for Inspection and Measure-
ment, edited by H. Freeman, Academic Press, 1989.

(2]
3]

(4]

5]

6

—_

(7
(8]

[9

—

[10] S. K. Nayar, Shape from Focus System for Rough Sur-
faces, Proc. Image Understanding Workshop, San
Diego, January, 1992.

[11] T. Ninomiya, M. Nomoto, Y. Nakagawa, Automatic 2-
1/2D Shape Inspection System for Via-Hole Fillings of
Green Sheets by Shadow Image Analysis, Proc. IEEE
Intl. Conf. on Robotics and Automation, pp. 515-520,

1989.
R. G. Willson and S. A. Shafer, Dynamic Lens Com-
pensation for Active Color Imaging and Constant Mag-

nification Focusing, Carnegie Mellon University, CMU-
RI-TR-91, October, 1991.

[12]



(@) i=2

(c)i=8

d)i=11 (e)i=14 (f)i=18

Ve
L &

T

1t
ywa
I

‘\\‘ ~.. \\|
U .“ il

(g) Reconstructed Image

(h) Depth Maps.

Figure 6: Experimental Results: Via-hole filling on ce ramic substrate.
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