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Recall - Fourier Series

Fourier series is a way to represent a function as the
sum of simple sine waves

It decomposes any periodic signal into the sum of a set
of simple sines and cosines (or complex exponentials)
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Recall - Fourier Series

* Fourier Series is only applicable for periodic
signals.

* Fourier Transform can be performed on aperiodic
signals as well.

* |t results in a function F(w) that is continuous
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Overview

e Fourier Transform (1D)
— properties
— convolution theorem
— sampling in the Fourier space

© Raphael Sahann



All Fourier Transforms

Spatial Domain

Frequency Domain

F(w)e?*™ dt F(w) = / f(t)e 72 qt
continuous continuous
FS - f(t) - Z Cn.ejz%‘—t Cn = %/ f(t)(_'._j 2;-"tdt
Fourier Series | n=—o . —T/2
continuous + periodic discrete
. M-1 M—1
Dl——r —_ f — i E Pj27r7nn/1\] Fm — Z fne—jzﬂ"”"/i\[
. n l\[ m , )
Discrete FT . m=0 =0 L
discrete + periodic discrete + periodic
DTFT —

Discrete Time FT

1 [7 :
fn —/ F(w)e’*"dw

T o7 -

discrete
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FIGURE 4.41 (a) Test pattern of size 688 < 68K pixels, and (b) its Fourier spectrum. The
spectrum s double the image size due to padding but is shown in half siz¢ so that it nits «emmB . -«»mm B .
in the page. The superimposed circles have radi equal 1o 10, 30, 60, 160, and 460 with
respect to the full-size spectrum image. These radii enclose 87.0, 93,1, 95.7, 9758, and
99.2% ol the padded image power, respectively. . .

aee eee

aanaadaaadd :aaaaaad

» b

« 4

L

POURE £.87 (a) Ovgpns v (1) BHovalts o Bhieniog wvag 1L with ool
oo . et o vl valees | Lot 100 and 0, s shoms i g L40D
poner pommoved by those fiors was 15,89 45 22 and 085 of the sotal, rospoctive by

© Torsten Moller



Fourier Transform

An aperiodic signal can be thought of as periodic with infinite period.

Let z(t) represent an aperiodic signal.

x(t)
5 S t
o0
“Periodic extension”: zp(t) = Y a(t+ kT)

k=—oc

zp(t)

— 1 l

S S 7

Then z(t) = lim axp(t).
T 00 ,
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Fourier Transform

Represent xzp(t) by its Fourier series.

zp(t)
' t
5 S5 7
T/2 ‘ og ¢ . 277,35' . ¥
1 —j %%k 1 —j2rk sin === 2 sinwS
ap = —/ xp(t)e T Rt gt — —/ eI TR gy — —
T ~T/2 T -8 wk T w
- 2sinwS . .eT
— o W = /w)() =k T
S T — k
—1 — < ~_ L — w
wo = 27/T
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Fourier Transform

Doubling period doubles # of harmonics in given frequency interval.

zp(t)

5 S i !

T/2 DI 1 1S .27 sin TQW""S 2 sinwS
/ ’I:T(t)e_]’l_"‘tdt o / ge_JTktdt =TT L

Tay.

2sinwS D — L
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Fourier Transform

As T — oo, discrete harmonic amplitudes — a continuum E(w).

zp(t)
—- 1
-5 S T
1 T/2 _i2mpy 1 S 2, sin%}-‘“—g ~ 2sinwS
aj = — xp(t)e ' TVdt = — e T T™dt = = —
T ~T/2 T -8 wk T w
T'ay . 27
2511:‘»05 w = kwp = k?
________________ k

r/2 . 9
lim Tap = lim / z(t)e 7¥tdt = = sinwS = E(w)
T—00 T'—o0 J_T/2 w
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Fourier Transform

As T — oo, synthesis sum — integral.

zp(t)

r/2 . 9
lim Tap = lim z(t)e 9ldt = ZsinwS = B(w)
T —oc T'—ooJ —T/2 W
> 1 -27TA > o0
1 B(w) e TR — “0 wa—>—/ E(w)e™tdu
3 Lewe¥i- 35 2p) e
k=—00 “=—— k=—oc

A
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Fourier Transform

Replacing E(w) by X(jw) yields the Fourier transform relations.

E(w) = X(jw)

Fourier transform

X(jw)= / "J“" dt ( “analysis” equation)

Y . ,
x(t)= ﬂ/ X (jw)e?“tdw (“synthesis” equation)
—o0

Form is similar to that of Fourier series
— provides alternate view of signal.
© Prof. Dennis Freeman, MIT, 2011
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Properties of the Fourier Transform

Property x(t) X (jw)
Linearity axy(t) + bxo(t) aX1(jw) + bXao(jw)
Time shift x(t — tp) e_j'“’t(’X(jw)
Time scale x(at) X I
ja|  \ a
lx(t
Differentiation : ”;5 ) jwX (jw)
Multiply by ta(t) L4 X (jw)
’ LU\ T _——
ply by T

Convolution

x1(t) * x2(t)

X1(jw) x Xo(jw)

© RS/Prof. Dennis Freeman, MIT, 2011
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Fourier Transform

The Fourier transform is a function of real domain: frequency w.

Time representation:
z1(t)

—1 1
Frequency representation:
, 2sin w
X1(jw) = —
/ K

© Prof. Dennis Freeman, MIT, 2011
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Fourier Transforms

Stretching time compresses frequency.

, 2sinw
71(t) X1(jw) = "
1 / 2
t vf\\/ \//\v w
—1 1 T
4 sin 2w
Xo(jw) =
2(jw) 0
2(t) 4
1
t ,
—2 2 -
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Moments

The value of X(jw) at w =0 is the integral of z(t) over time t.

o0 _ o0 , o0
X(jw)|y—o = / x(t)e I@tdt =/ x(t)elOdt = / x(t) dt
o =00 —0C o —=0OQ
, 2sinw
1 “/ area = 2 ========--- 7 2
- T

© Prof. Dennis Freeman, MIT, 2011
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Moments

The value of x(0) is the integral of X(jw) divided by 2.

1 o0
x(0) = - X(Jw)eJ“’tdw = —/ X(jw)d

, 2sinw

71(t) X1(jw) = "

darea
1 reccccccca ST 1 2
Y\/
t A/ — e e (W
—1 1 T
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Moments

The value of x(0) is the integral of X(jw) divided by 2.
o0
/ X (jw) e?¥tdw = —/ X(jw)d
T o

, 2sinw
71(t) X1(jw) = "

darea

! D 27 ly 3
+ | +
| 1 t A/ A W

“

equal areas!
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Stretching to the Limit

Stretching time compresses frequency and increases amplitude

(preserving area).
2 sin w

x1(t) X1 (jw) =

W

t

New way to think about an impulse!
© Prof. Dennis Freeman, MIT, 2011
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Fourier Transform

One of the most useful features of the Fourier transform (and Fourier
series) is the simple “inverse” Fourier transform.

o0 )
X(jw):/ z(t)e I@tdt (Fourier transform)
J =00
1 [ : :
x(t)= ﬂ/ X (jw)e?“tdw (“inverse" Fourier transform)
J —0o0

© Prof. Dennis Freeman, MIT, 2011
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There are 4 Fourier Transforms!

1 T/2 - 2T
Cp = T/ f(t)e._]th

~T/2
o'®

fit)ym= D cped T
e f(t) is periodic with period T! ~
e General Fourier Transform requires no

penodnmty
/ f e 2wt At

f(t) = /_ F(w)e??™ dt

© Torsten Moller
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DFT — the most important one

e Discrete Fourier Transform (DFT) requires
periodicity in both transform pairs

M-—1
F = Z fne—j27rmn/M
n=>0
1 M—1
. j2mmn /M
Jn = i mzz:o Fpe

© Torsten Moller



All Fourier Transforms

Spatial Domain

Frequency Domain

l__r

f(t) = /OC F(w)e?*™ dt

F(w) = / f(t)e 72 qt

continuous continuous
> ' 2 _I_ ,1'/2 c2Tn
FS T f(t) = Z Cn.e]-Tt Cn = T/ f(t)(.’._J T dt
Fourier Series . n=—co o ~T/2
continuous + periodic discrete
. M-1 M—1
Dl_—r — j' — i E (,j27rm.n/f\] F,, = Z fne—jil'frnm./.-\{
. T ‘A[ mr- . ‘
Discrete FT . m=0 .=y .
discrete + periodic discrete + periodic
DTFT —

Discrete Time FT

1 T :
fn —/ F(w)e!*“"dw

T o -

discrete

© Torsten Moller

F(w) = Z frne 7" dw

Nn—=—00

continuous + periodic
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A little more Iintuition

ab

FIGURE 4.29 (a) SEM image of a damaged integrated circuit. (b) Fourier spectrum of
(a). (Original image courtesy of Dr. J. M. Hudak. Brockhouse Institute for Materials
Research, McMaster University. Hamilton, Ontario, Canada.)

FIGURE 4.30
Result of filtering
the image in

Fig. 4.29(a) by
setting to O the
term F(M/2.N/2)
in the Founer
transform.

© Torsten Moller



Visualisation of the spectrum

e Generally, we look at the amplitude of an
image transform; hence we take a
logarithmic scale to represent the values as
gray-values.

> high
frequencies

T~

lOW

SN . . frequencies
original image its amplitude spectrum

© Laurent Condat / Torsten Moller 25



Inte‘rpretation

¢ The lines correspond to discontinuities, with perpendicular orientation.

¢ The horizontal and vertical lines come from the implicit periodic boundary
conditions.

¢ For natural images, most of the information is concentrated in the
low-frequency region.

¢ | ow frequencies correspond to the slowly varying components, whereas
high frequencies correspond to fast gray level changes (edges...)

¢ The diagonal line results from the discontinuity induced by the hat.

© Laurent Condat / Torsten Moller 26



Interpretation

¢ The lines correspond to discontinuities, with perpendicular orientation.

¢ The horizontal and vertical lines come from the implicit periodic boundary
conditions.

¢ For natural images, most of the information is concentrated in the
low-frequency region.

¢ | ow frequencies correspond to the slowly varying components, whereas
high frequencies correspond to fast gray level changes (edges...)
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Some Examples

e Since the image
content is
periodic, the
spectrum is
discrete.

e |[f the period of the
signal increases,
the distance
between the
frequencies
decreases, and
ViCe versa.

© Laurent Condat / Torsten Moller



Some Examples

e The 2D periodicity of the image induces
the 2D periodicity of the FT

e Since the image content is periodic, the
spectrum is discrete.

© Laurent Condat / Torsten Moller



Texture = periodic pattern

e The Fourier spectrum is well suited for
describin
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A little more Iintuition
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FIGURE 4.24

(a) Image

(b) Spectrum
showing bright spots
n the four cormers.
(¢) Centered
spectrum. (d) Result
showing increased
detanl after a log
transformation. The

X
- p - 1

zero crossings of the
spectrum are closer in
the vertical direction
because the rectangle
i (a) s Jonger in that
direction. The
coordinate
convention used
throughout the book
places the origin of
the spatial and
frequency domains at
the top left

" "
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A little more Iintuition

© Torsten Moller
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FIGURE 4.25

(a) The rectangle
in Fig. 4.24(a)
translated

and (b) the
correspondmg
spectrum

(¢) Rotated
rectangle

and (d) the
corresponding
spectrum, The
\l\.lnzln
corresponding 1«
the transiated
rectangle s
identical 1o the
spectium
corresponding to
the orrimal imasg
in Fig. 4.24(a)

o
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A little more Iintuition

abc

FIGURE 4.26 Phase angle array corresponding (a) to the image of the centered rectangle
in Fig. 4.24(a). (b) to the translated image in Fig. 4.25(a), and (¢) to the rotated image in
Fig. 4.25(c¢).

© Torsten Moller 33



Not very intuitive

abc
de |

FIGURE 4.27 (a) Woman. (b) Phase angle. (¢) Woman reconstructed using only the
phase angle. (d) Woman reconstructed using only the spectrum. (¢) Reconstruction
using the phase angle corresponding to the woman and the spectrum corresponding to
the rectangle in Fig. 4.24(a). () Reconstruction using the phase of the rectangle and the
spectrum of the woman. 34



Learning Goals

What are the differences between the Fourier
Series and the Fourier Transform?

Why is the Fourier Transform so important?
Low frequencies correspond to .... in an image?

High frequencies correspond to .... in an image”

© Jana Kemnitz
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Recall

¢ \What are the properties of F(@) in the
Fourier Transform??

¢ \Vhich information contains the amplitude
of a spectrum and which information
contains the phase of a spectrum?

© Jana Kemnitz
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Recall

e Amplitude spectrum alone (middle image) and phase
spectrum alone (rightmost image)

e with the phase spectrum alone, you can make sense of
the nature of the image, even though the details are
unclear.

e With the amplitude spectrum alone however, you
cannot make any sense of the image, even though the
dimensions(relative size of each component) are given.

© Jana Kemnitz
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Overview

— properties
— convolution theorem
— sampling in the Fourier space

© Raphael Sahann
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What happens to an impulse?

e it is basically a constant!

1 (T2 2
Cp = — 5(t)e 7 T !
I /_T/2
1
Cn — TBO
1
Cp = —
T

© Torsten Moller



What about a shifted impulse”?

¢ the shifts remain as frequencies

]. T/2 27rn
cn:—/ O(t —tg)e 7T !
—T/2

© Torsten Moller 40



What happens to an impulse train”

e |[mpulse train is periodic — apply Fourier
series, will not do the math here, see book:

sar(t) =) d(t—nAT)

Sar(w) = ﬁ Z O (w AnT)

e distance between impulses grows inversely

© Torsten Moller
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What happens to a box?

e it is the well-known sinc function
sin 7t

sinc(t) = t
-

f(1) F( ) |F(p)l
) 4 '}

AW A AW A

- H 2 0 u:, 2

AN AA WV‘\NVVW WWWWV
\ '.‘
- | - - - - U

2 /W J/’ f 0X \\_ Y 'W
- 2/W-- ‘Y yw yw 2w

abc

FIGURE 4.4 (a) A simple function; (b) its Fourier transform: and (c¢) the spectrum. All functions extend to
infinity in both directions.

© Torsten Moller 42



Overview

— convolution theorem
— sampling in the Fourier space

© Raphael Sahann
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LTl systems

© Torsten Moller



LTl systems

® sine+cosine are eigenfunctions of an LTI
system (a convolution)

* [he eigenvalue popping out is the Fourier
ransform of the LT|

Black Box
System ¥

€jwnAT(I)(UJ)

P(w) = Z e~ "IWAT G (mAT)

m=—0o0

© Torsten Moller 45



What 1s the Fourier Transtorm
of a convolution?

¢ doing this in the continuous domain:

f'r() f*¢ / f t—T)
F,(w /Uf )Vh(t — TdT e~ 12Tl gt

= /f(T) / h(t —7)e” JZ”“”dt] dr
:/f(r) :H(w)e—j%“"T] dT

46



What 1s the Fourier Transtorm
of a convolution?

e convolution == multiplication:
f*o(t) = F(w)H(w)
e multiplication == convolution:

f(t)o(t) <= F(w) * H(w)

© Torsten Moller
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Convolution — the movie

¢ from wikipedia:

1 -, .......... .......... .......... : |:]I¥ea underf(tbu-r.) s
(1] - e eieieien mpnanesna facanansns DTN R f(x) i
' ' ——ott-v)

1] ST e S S DTN PN

D4l U A SR S P VPP e

]-.: ......... - . ......... . I:]A'eaunderf(th@-t)"
" i . . . . f(t)

: : : : : LTt

05 _' ......... _ ......... ' .................. § ....... . ......... ’ (f‘gn)

&t
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Learning Goals

Why is Convolution such an important concept?
How does the Convolution work?

What is an LTI System?

How can | characterise an LTI System?

© Jana Kemnitz
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Overview

— sampling in the Fourier space
e Fourier Transform (2D)

© Raphael Sahann
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What was sampling again®

FO) xsar(t) = T

'''''''''

S F(nAT)S(t —naT) LI

-~ ||]|Hr.”n|| -
> f[nlo(t — nAT) S

© Torsten Moller



Sampling in the Fourier Domain

f(t)SAT(t) S F(w) % SAT(W)




Sampling

Sampling allows the use of modern digital electronics to process,
record, transmit, store, and retrieve CT signals.

e audio: MP3, CD, cell phone

e pictures: digital camera, printer
e video: DVD

e everything on the web

© Prof. Dennis Freeman, MIT, 2011
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Sampling

Sampling is pervasive.

Example: digital cameras record sampled images.

Y I('Ta U) n I[m, 'n]
T —_—

T ’ —_— 17

© Prof. Dennis Freeman, MIT, 2011
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Sampling

Photographs in newsprint are “half-tone” images.
black or white and the average conveys brightness.

Each point is

© Prof. Dennis Freeman, MIT, 2011
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Sampling

Zoom in to see the binary pattern.

© Prof. Dennis Freeman, MIT, 2011
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Sampling

Every image that we see is sampled by the retina, which contains =

100 million rods and 6 million cones (average spacing ~ 3um) which
act as discrete sensors.

Sclera et Choroid

Ciliary body

Courtesy of Helga Kolb, Eduardo Fernandez, and Ralph Nelson. Used with permission.

http://webvision.med.utah.edu/imageswv/sagschem. jpeg

© Prof. Dennis Freeman, MIT, 2011 57



Sampling and Reconstruction

To determine the effect of sampling, compare the original signal xz(t)
to the signal z,(t) that is reconstructed from the samples z[n|.

Uniform sampling (sampling interval T').

Impulse reconstruction.

rp(t) = Z x(n|é(t — nT)

A 7 AN

* T \ ’:/ T“ /,,
T

x[n| = x(nT)

™

-~
~

\

o

A
\\l n

© Prof. Dennis Freeman, MIT, 2011
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Reconstruction

Impulse reconstruction maps samples z[n] (DT) to z,(t) (CT).

7p(t) = nioo z[n]d(t —nT)
- nﬁ; z(nT)8(t — nT)
- f: z(t)8(t — nT)
= J“(I‘)' i ‘5(1 —nT)

Resulting reconstruction xz,(t) is equivalent to multiplying x(t¢) by
iImpulse train.

© Prof. Dennis Freeman, MIT, 2011



Sampling

Multiplication by an impulse train in time is equivalent to convolution
by an impulse train in frequency.

— generates multiple copies of original frequency content.

X(je)
A
W W W
P (.7'&2T
Pt

Xp(jw) = 5= (X(j-)* P(j-))(w)

1
ANANAN
L] ] w

© Prof. Dennis Freeman, MIT, 2011




Sampling

The high frequency copies can be removed with a low-pass filter
(also multiply by 7' to undo the amplitude scaling).

Xp(jw) = 5= (X(G-) * P(-)) (@)

1
! T

w

Impulse reconstruction followed by ideal low-pass filtering is called
bandlimited reconstruction.

© Prof. Dennis Freeman, MIT, 2011
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The Sampling Theorem

If signal is bandlimited — sample without loosing information.

If 2(t) is bandlimited so that
X(jw) =0 for |w|> wnm

then z(t) is uniquely determined by its samples z(nT) if
2,—
Ws = i > 2w

T
The minimum sampling frequency, 2w,,, is called the “Nyquist rate.”

© Prof. Dennis Freeman, MIT, 2011
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Summary

Three important ideas.

Sampling
x(t) — x[n] = x(nT)

Bandlimited Reconstruction (ws =

x(n] —»

Impulse
Reconstruction

2T
7)
LPF
Tp(t) = T
> — — w
Yx[n]d(t —nT) | =% =

—» x,(t)

Sampling Theorem: If X(jw) =0V |w| > ? then z,.(t) = z(t).

© Prof. Dennis Freeman, MIT, 2011
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CT Model of Sampling and Reconstruction

Sampling followed by bandlimited reconstruction is equivalent to
multiplying by an impulse train and then low-pass filtering.

LPF

zp(t)
x(t) —>® . w —» x,(t)

: -
)

p(t

&
’a

e

§

p(t) = "sampling function”

ARRRAETAD

© Prof. Dennis Freeman, MIT, 2011 64



Aliasing

What happens if X contains frequencies |w| > T2

X(jw) !
.

)
ERUEE

© Prof. Dennis Freeman, MIT, 2011 65



Aliasing

What happens if X contains frequencies |w| > T2

X(jw) !

11—

)
ERUEE

© Prof. Dennis Freeman, MIT, 2011 66



Aliasing

What happens if X contains frequencies |w| > T2

X(jw) !

N

)
ERUEE
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Aliasing

What happens if X contains frequencies |w| > T2

X(jw) !

e

)
ERUEE

© Prof. Dennis Freeman, MIT, 2011 68



Aliasing

The effect of aliasing is to wrap frequencies.

QOutput frequency

\ y

(J)

__Ws :
2 2

© Prof. Dennis Freeman, MIT, 2011 69



Aliasing

The effect of aliasing is to wrap frequencies.

QOutput frequency

(J)

__Ws :
2 2

© Prof. Dennis Freeman, MIT, 2011
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Aliasing

The effect of aliasing is to wrap frequencies.

Output frequency

\\*\2
, Input frequency
4 N\

B w

__Ws
2 2

© Prof. Dennis Freeman, MIT, 2011
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Aliasing

The effect of aliasing is to wrap frequencies.

Outpg@ frequency

’\ 2
, Input frequenc
\J/%i\\/ P d V'
)

X(Jw

© Prof. Dennis Freeman, MIT, 2011
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Aliasing

High frequency components of complex signals also wrap.

X(jw)

/T\l

by
Pty

Xp(jw) = 5= (X(J-)* P(j-))(w)

A ALK K

Ws Ws
-7

© Prof. Dennis Freeman, MIT, 2011
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Aliasing

High frequency components of complex signals also wrap.

X(jw)
A

: w
P(jw)
2
T 7

Xp(jw) = 9= (X(j ) * P(j-))(w)

ANAAN

W w
2 ‘

© Prof. Dennis Freeman, MIT, 2011 74



Aliasing

High frequency components of complex signals also wrap.

X(jw)
AN

: w
P(jw)
2
T 7

Xp(jw) = 5= (X(j-) * P(j-))(w)

1
Ws wWs
- 2

© Prof. Dennis Freeman, MIT, 2011 75




Aliasing

High frequency components of complex signals also wrap.

X(jw)

N

)
Lt

Xp(jw) = 5= (X(J-)* P(j-))(w)

AR

__Wws wWs

o

© Prof. Dennis Freeman, MIT, 2011

76



Aliasing

Aliasing increases as the sampling rate decreases.

Xp(jw) = 5= (X ) * P(j-))(w)

OK

Ws
.

2

Ws
.

2

© Prof. Dennis Freeman, MIT, 2011
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Anti-Aliasing Filter

To avoid aliasing, remove frequency components that alias before
sampling.

Anti-aliasing Reconstruction
Filter Filter
1 2y (t) T
Jj(t) > Ws Ws w _’® - > Ws Wg Y Ir(t)
-5 T T -5 T
p(t)

© Prof. Dennis Freeman, MIT, 2011



Aliasing

Aliasing increases as the sampling rate decreases.

X(jw)
N
)
I A

Xp(jw) = 5= (X ) * P(j-))(w)

WAVANUNAVAY

. .

© Prof. Dennis Freeman, MIT, 2011
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Aliasing

Aliasing increases as the sampling rate decreases.

Anti-aliased X (jw)

Xp(jw) = 5= (X ) * P(j-))(w)

NAVAN

N~

S

Ws Ws
2 2

© Prof. Dennis Freeman, MIT, 2011
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Aliasing

Aliasing increases as the sampling rate decreases.

Anti-aliased X (jw)

Xp(jw) = 5= (X ) * P(j-))(w)

AVAYA

__Wws Ws
2 2

© Prof. Dennis Freeman, MIT, 2011
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Aliasing

Aliasing increases as the sampling rate decreases.

Anti-aliased X (jw)

Xp(jw) = 5= (X ) * P(j-))(w)

A

Ws
.

Ws
2 2

© Prof. Dennis Freeman, MIT, 2011
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Aliasing

abc

FIGURE 4.17 Illustration of aliasing on resampled images. (a) A digital image with negligible visual aliasing

(b) Result of resizing the image to 50% of its original size by pixel deletion. Aliasing is clearly visible.

(¢) Result of blurring the image in (a) with a 3 X 3 averaging filter prior to resizing. The image is slightly

more blurred than (b), but aliasing is not longer objectionable. (Original image courtesy of the Signal
Compression Laboratory, University of California, Santa Barbara.)

© Torsten Moller
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Learning Goals

 What are the properties of an LTI system?
* What is the Sampling Theorem?

* What is Aliasing and how can we avoid it?

© Jana Kemnitz
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