Graph Drawing

Graph Visualization and Navigation in Information Visualization: A Survey Ivan Herman, Guy Melancon and M. Scott Marshall

"Search, Show Context, Expand on Demand": Supporting Large Graph Exploration with Degree-of Interest Frank van Ham, Adam Perer

Dana Markovic, VU Visualization SS2014

Overview

- Key issues in Graph Visualization
- Clustering
- Extending DOI to graphs Search context
- Show and Expand-on-Demand context
- Implementation example

Key issues in Graph Visualization

• Size

- Performance, display limit
- Viewability and usability
- Cognitive perspective
- Planarity
 - When dealing with small and sparse graphs
 - Drawing graph without edge crossing
 - Various constraints such as *aesthetic rules*
- Predictability
 - "preserving the mental map of the user"
- Time complexity
 - Real time interaction
 - Updates in very short time intervals

Clustering

- Improves clarity and increases performance, rendering
- Structure-based vs. content-based
- Used for *filter* and *search*
- Layout
 - Representing clusters with glyphs super nodes
 - Omitting edges
 - Hierarchical
 - Force-directed layout
- Node metrics: measure or quantify an abstract feature
 - Numeric computable function
 - E.g degree of node, Strahler metric, *Degree of Interest* from Furnas

Clustering

- Metrics are used to influence layout
- Kimelman's method for representing the unselected nodes
 - Ghosting, Hiding, Grouping

Extending DOI to Graphs

• Furnas' DOI function:

$DOI(x|y)=\alpha API(x) + \beta D(x,y)$

- A priori interest function *API*, distant function *D*, *x* location, y current focus
- Additional functions
 - El (e,x,y) disinterest function *Search* component
 - Defines path length between two arbitrary nodes in the graph
 - UI (x,z) user interest funct. Many local maxima
 - Interest information known between the user chooses a focal node
 - N(x) intristic value of the neighbours
 - Interest of node depends on the max. of ist own interest values and a fraction of ist highest interest neighbours

Extending DOI to Graphs

• Final resulting function

 $DOI(x|y,z)=\alpha APIdiff(x) + \beta UI diff(x,z) + \gamma D(x,y)$

z-search parameter, y focus node

• Diffusing the interest values over the entire graph

Show and Expand-on-Demand Context

• Show

- How to efficiently compute a connected subgraph F with size at most S that contains y and has maximal total interest?
- ---> Greedy optimization algorithm
- Expand-on-Demand
 - use interest function to define which adjacent nodes are most important
 - Highlight n most interesting directions (n<5)

Implementation

Basic UI layout. van Ham and Perer

Conclusion

- Thorough description of key issues in first paper
 - Descriptions of techniques
 - Could be organized better
- Second paper presents solution to problems adressed in the first one
 - Implementation and evaluation also described
 - Future work well described
 - Algorithms could be more formal

References

- van Ham, F., Perer, A: "Search, Show Context, Expand od Demand": Supporting Large Graph Exploration with Degree-of Interest, IEEL Transactions on visualization and Computer Graphics, Vol.15 No.6 (2009)
- Herman, I., Melancon, G., Marshall, M.S.: Graph Visualization and Navigation in Information Visualization: A Survey (2000)