Bioinformatics II

VISUALISIERUNG (VU) – 13.MAY.2015

1027905 - DICHEV

Visualizing biological pathways

Introduction:

- pathway models for biological processes
- significant broad impacts
 - ► for products in biotech applications and drug discovery
- Goal: to try to convey complex global functionality

Scientists are skeptical about the biological value of this way visualizations.

Problem

There is not yet standardized language for describing the pathways

'pathway' is the user-defined network of the biological interactions

► Categories:

- metabolic pathways
- gene regulation/transcription pathways
- signal transduction pathways

Summary

4

Categories	Table 1 Summary of requirements for Requirements	pathway visualization systems		
Pathway assembly	1 Construct and Undate	Collect and link pathways from multiple resources		
Fattiway assertiony	2 Context	Provide information about pathways		
	3. Uncertainty	Maintain alternate hypotheses and information reliability		
	4. Collaboration	Enable group work		
Information overlay	5. Node and edge representation	Details about network entities and interactions		
	6. Source	Details about source resources		
	7. Spatial information	Physical locations of pathway entities in the cell		
	8. Temporal information	Time-related properties		
	9. High-throughput data	Expression data from high-throughput experiments		
Pathway analysis	10. Overview	Comprehend large or multiple pathways		
	11. Inter-connectivity	Intra- and inter-pathway effects of entities on each other		
	12. Multi-scale	Relate networks at different levels of abstraction		
	13. Notebook	Track accumulated research information		

The requirements are grouped into three main categories: pathway assembly, information overlay, and pathway analysis.

Metabolic pathways

GenMapp – Statistical Analysis

0

Cytoscape

7

GScope

PathwayAssist and Patika

VIS SS14

9

Shortcomings

they do not provide adequate domain-specific biological context

Users must perform many tedious operations to search for and extract relevant information

Tools does not provide users with rapid biologically relevant insight

Tools for exploring large complex biological systems of many integrated pathways are still needed!

A system for visualizing and analyzing near-optimal protein sequence alignments

11

VIS SS14

two alternative methods for displaying large sets of protein alignment solutions:

- Optimal
- near-optimal

Pairwise alignments

12

		10	20	30	40	50
1AU8A	IIGGR	ESRPHSRPYM	AYLQIQSPA	AGQSRCGGFLV	REDFVLTAA	HCWGSNINVTL
1TGSZ	:.:: VDDDDKIVGGY	:: FCGANTVPY-	:	.: ::::: GYHRCGGSLI	:.:: NSOWVVSAA	::. :.:.: : HCYKSGIOVRL
	10	20		30	40	50
	60	70	80	90	100	110
1AU8A	GAHNIQRRENT	QQHITARRAI	RHPQYNQR	TIQNDIMLLQL	SRRVRRNRN	VNPVALPRAQE
1TGSZ	: ::. : GEDNINVVEGN	.: :.:: EOFISASKSI	·····	LNNDIMLIKL	: KSAASLNSR	::: . VASISLPTSCA
	60	70	80	90	100	110
	120	130	140	150	160	170
1AU8A	GLRPGTLCTVA	GWGRVSMR	RGTDTLREV	VQLRVQRDRQC	LRIFGSYDP	RRQICVGDRRE
1TGSZ	. :: : SAGTQCLIS	::: . : GWGNTKSSGT	:.:. SYPDVLKCI	: LKAPILSDSSC	 KSAYPGQIT	:.: . SNMFCAGYLEG
	120	130	140	150	160	170
	180	190	200	210	22	0
1AU8A	RKAAFKGDSGGPLLCNNVAHGIVSYGKSSGVPPEVFTRVSSFLPWIRTTMRS-					
1TGSZ	::::: GKDSCQGDSGG	III PVVCSGKLQG	IVSWGSGC	. : :.:. AQKNKPGVYTK	: ::. VCNYVSWIK	:. : QTIASN
	180	190	200	210	220	

Path graphs

13

System goals

to aid understanding of the relationship between two proteins

▶ to facilitate understanding of the alignment generation algorithms.

System screenshots

animated pairwise alignment

partial path graph alignment

Conclusion 1.1

a system that improves the understanding of relationship between two proteins

The ability for users to exploit and use expert knowledge is facilitated by the application of highlights, filters and the ability to directly create and edit alignments.

Conclusion 1.2

17

- not a replacement
- supplement to existing sequence analysis techniques
- the system could be used to construct high-quality homology models

VIS SS14

Thank you for your attention!

References

1. Visualizing Biological Pathways: Requirements Analysis, Systems Evaluation and Research Agenda, Purvi Saraiya, Chris North and Karen Duca, 2005

 A System for Visualizing and Analyzing Near-Optimal Protein Sequence Alignments, Michael E. Smoot, Ellen J. Bass, Stephanie A. Guerlain and William R. Pearson, 2005