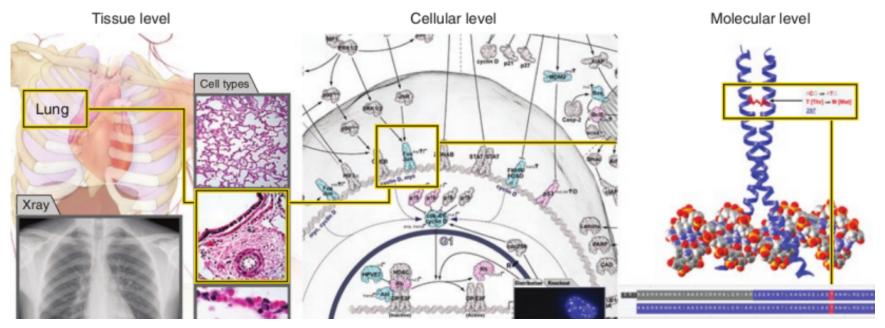
VIS Presentation Bioinformatics

Alexander Pfundner

Papers

- 1. Visualizing biological data now and the future [1]
- 2. Visualization of image data from cells to organisms [2]

Biovis today

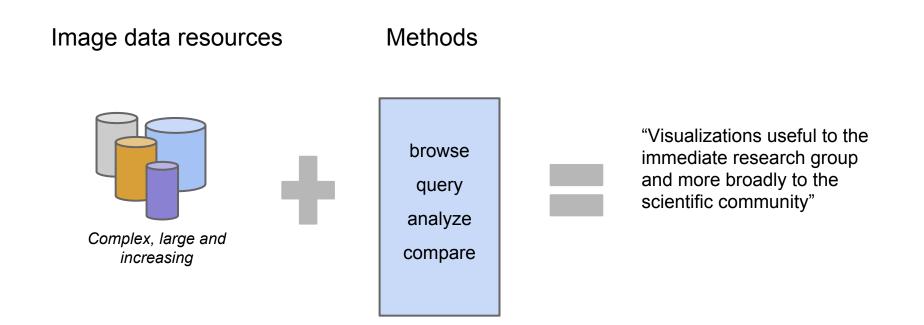

• Areas

- Sequencing alignment
- Image based data
- Molecular structures

Custom Solutions

- Integrated with remote sources
- Interoperability
- Trend to allow reuse (VTK [2], Cytoscape [3])

The user-interface challenge


Possible integrated vis-environment [1]

"Be able to seamlessly move between the data"

Focus elements

- Reward usability
- Balance automation and visualization
- Standards!
- New forms of augmented interaction
- Computational problems

Image based data

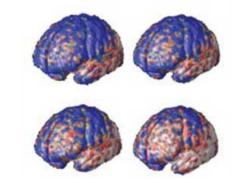
Overview 2nd Paper

- 1. Issues related to digital images
- 2. High-dim image data
- 3. Collaboration & sharing

High-dim image data (1)

- Additional dimensions
 - Space (3D imaging)
 - Time (functional MRI)
 - Channels (fluorescent markers)
- Combination!

High-dim image data (2)


• 3D

- Volume + Transparency + Slicing
- Coupled with virtual reality environments
- Navigate through biological entities

Time

- Static gallery of images
- Movies discard too much data
- Alternatively heatmaps
- Tracking algorithms

What to do with extra dimensions?

- Dimensionality reduction
- Color-coding

"This, however, only partially alleviates the problem"

"... in this challenging field, there is still room for new, sophisticated visualization tools"

Perspectives

- Apply methods from sequencing

 Tools like BLAST (http://blast.ncbi.nlm.nih.gov/)
- Adopt MRI-vis for microscopy applications
- Image data integration
 - statistical tests
 - mathematical modeling
 - automated reasoning
- Key elements
 - database federation
 - data storage in semantic web formats

Examples

- Visible Cell
 - http://www.visiblecell.com/illoura
- BioSPICE
 - http://biospice.sourceforge.net/