JO.I-::I O » ; \Cl.'il:-'\l g
'f-'"'.’u.,‘]q [J[ﬁ -.u:j.'}"l.

oftware Visualization

Alexandra Tamas
1105037

101014,
Q107107 ";ﬁ 10 L
K)l‘ 1 " ¢ ; J"‘jf‘-‘)
h»‘\ a’.} 'IJ":""-».
s & u}:{} A \-._k‘.
Y A AN
$ o, WO o
3] 9, ™ oV
o Oy, "\“ A0
=) . 9;.-. i@
~ 10 .n.\".ﬂ'\'l'
h? l'[:'l;j p1o01 iy
]
B
)
W
)

44—

" A presentation of the papers;

Thomas A. Ball and Stephen G. Eick, IEEE
Computer 29(4):33-43, 1996

Lucian VVoinea, Alex Telea, and Jarke J. van
Wijk, Proc. SoftVis 2005, p 47-56.

B -

http://research.microsoft.com/en-us/um/people/tball/papers/softvis.pdf
http://www.cs.rug.nl/~alext/PAPERS/SoftVis05/paper.pdf

Questions that are
about to be
answered in the
next 15 minutes:

What are the papers about?

What is the thesis (main point) of these papers?
What are the weaknesses of these works?
What are the strengths of these works?

How could these works be applied?

What was the main experimental question(s) that the
authors asked?

Why did they ask this question?

What method(s) did the authors use to address their
guestion(s)?

What results did they obtain?

What new questions are revealed?

What guestions remain unanswered?

Paper 1:
Software Visualization in the
Large,
Thomas A. Ball and Stephen G.
Eick, IEEE Computer 29(4):33-43,
1996

http://research.microsoft.com/en-us/um/people/tball/papers/softvis.pdf

—
~Software Vlsuallzatlon In the

"""" _e ~ Large

Visualization:

2 help software engineers cope with
complexity

> Increase programmer productivity.
Software visible through:
* the display of programs
e program artifacts
. program behavior

B -

-*
' oftware Vlsuallzatlon |n the
sl “Large N

Visual representations can make the
process of understanding software easier

Basic properties of software to be visualized:
« Software structure

* Run-time behavior

* The code Itself

Algorithm visualizations

 usually hand-crafted

* require understanding the code before
visualizing it

* Infeasible for large systems or tasks
Involving programmer discovery

Py

(

if
i

f e S Y
{akip)

fprintf tprosatream, "N0Z23T%ce, akip)

Tt Iy -
LoDy e 8c

E o - L.
nes (pdev,

4
E wikh 1 Eerog [
memast {in + leonk*line aire, 0,

in sire - lcnt * line_sized;

¥ _9pin_highi
/* ghuffle the ascan lines

conat char index([]
o 17,

Af mlkap)

]

fprantspro_xtram, "4 08 LS, mEag);

/¢ Fad warh laipaw af zaxo 4/
caomat 2o 1 ook flioe maze, b,
An_gara = l=mk ¢ lane_w:ra) ;

1y Ppazn_baghl
J* Chmffla the smom lines ¢/
S B H
ank 1
mtabaz
[s
2
.
L

Baria = 0 a ¢ 24 atdd

P
O RETIT I DOk O UIRIE T JIRCT L

Visual representations for code

" _Visual representations for code

* Pixel Representation

10

TR F s

Visual representations for code

>

File Statistics View Options Help

E—
[

[—
| E——

an343401cF

| [I—

addmr
bugnew
feature

addmr ;
h'; 4 I‘:;: | stats 21212
=1 = i

. stats 204f204f204
1 L

lines 12629/12629/12629 name lines 12629126291 7679 name
1 - ———]] L 1

: project ; project
| files 2020520 userid] L files 20720420 userid
1 - - | 4]

~Visual representations for code
* Hierarchical Representation

! 2 413

Ways productivity can be increased

* code discovery

* highlight of regions that exhibit \code
decay

* |dentify the current development activity

* Inspect code to ensure that it meets
coding standards.

13

\ Q‘Q\\g){% ot orgy o 9471

/f)/{)/

File Search DOptions Help

{ "Debug”, 1, Yzkdenu::Enahled,
{ "Help®, a, Wzhenu:Enakbl
I MULL }

|_.I.Jrr|:er|t:.:.t_: — EVREGLLA R

ol0i010
S

Progmm%mm paris @n

'('(Qwrmo,a
/ 0/

<.
=D
. om

bar] = {
Wehdenu:Enabled, |

‘zhtenu:Enahled, |
enu::Enahled,
enu:Enabled,
Vzhenu:Enablf

el rr|-||r|t|-|r fenubar

|_.|_1rn:er|t:.:.t_: = E"F'El_:IIL. .F.
14

Lol 1010

l0i0f0rg
(10 _ ‘\<

Qi g \o\°‘° o
\\0 Q\ /?(;/ O 0

/, 0, o
%, (),0/ &
T BtDI0TOr 0 o,
e 5 oy
f }\

app/srciseesales/imainbar.c - > tstisrc/seesales/imainbar.c

Deleted

andcode coverage

-.“ Ui { £ s
A Yl

O Y -
0f ¢ DF gy,

§| Eoit widgets |=1sea:

linefita

'l'fﬂﬂﬁf

WA Tl Sl A W

l

The Fmn kTRl

-

-

(Rl o)

| Patberm:

LT T CLadi

17

;)—

Weakness(es) and strength(s)

(-) most part of the images at the end of the
paper and not right after the corresponding
paragraph

(+) the neatly arranged writing and the good
documentation

e

.

Ihe-main experimental question-that the

< authors asked and why did they ask this

HOW to understand complex system
behavior from code?

BECAUSE

* understanding,

* changing,

* and repairing

code In large systems is time consuming and
costly

’—

What method did the a,uthQrs use
+JQ address

description of four innovative visual
representations of software that:

» scale to production-sized systems
2 illustrate their usage in five software
case studies

20

.~ How could this work be applied

to help software developers working on Bell
Laboratories 5ESS product

21

software visualization Is important because
most software artifacts are naturally invisible

B -»

D

HOW to make maximal
use of all available screen
real estate by using every
available pixel to convey
useful information about

software?

®

?

23

*
A questlon that remalns partlally

.l unanswered -

the graph layout problem, that is the most
diffcult aspect of showing software through
graphs

24

Paper 2:
CVSscan: Visualization of
Code Evolution,
Lucian Voinea, Alex Telea,
and Jarke J. van Wijk, Proc.

SoftVis 2005, p 47-56.

http://www.cs.rug.nl/~alext/PAPERS/SoftVis05/paper.pdf

,f—
’ Whal; 1S the paper a out

« Section 2 : a review of the line-based V|suaI|zat|on
tools for software evolution and their challenges

» Section 3: Introduction of CVSscan, a tool
developed to test and validate the proposed
visualization techniques

« Section 4: results of two case studies. These
studies show how the approach can be
successfully used to investigate the evolution of
files from real life software projects

 Section 5: summarizes the novel contribution
brought to software evolution visualization and
outlines future directions of research

B

4

"CYsSscan; Visualization of Code

Evolution

 during the life cycle of a software system the
source code is changed many times

* In the last decade, maintenance and
evolution exceeded 90% of the total software
development costs

 the corrective approach aims to facilitate the
maintenance phase, and is supported by
program and process understanding and fault

localization tools, e.g.

— SeeSoft,
— Aspect Browser

— Tarantula
27

"—

' SVsSscan: Visualization of Code
st 01010y 710! oo oS _L % " "

* Industry practice studies have shown that
maintainers spend 50% of their time on
understanding this code

* a novel concept, the bi-level code display
that gives a detailed view of

> the contents of a code fragment
2 its evolution in time

Y +

28

Visual mapping

.
o)
AN)

S

iIndentation and line length to suggest
code structure, a fixed-length pixel
line for all code lines and color to encode

structure
a) %

Figure 3: Line lavout a) SeeSoft b) CVSscan

Visual
mapping

Project files Time

File A >
visualize on the e Fle s VI[VZ [V VA [V
T,
same screen all e —
versions that a ——

-
—
—t
file has during its % () Em—
evolution, instead E
of all filesin a | '
project at a given Line position in file v Line position in file

a) b)
t| me Figure 4: Use of horizontal axis in line-based visualizations
a) files, in SeeSoft b) time, in CVSscan

-

30

_—

~ Visual mappin

. /1 .
Legend | EEEE Constant line I* New lines

Discrete time (versions) Discrete time (versions)

|) l— Deleted
Lines to be | = lines

M =%
inserted |

Local Line Position Global Line Position
a) b)

Figure 6: Line lavout in CVSscan: a) file-based b) line-based

31

Visual
mapping

the CVSscan
Vlsuallzatlon Of I".s.tall:uiliz:suti:::n phasgl
a file evolution

through 65
vVersions

Figure 7: Line status visualization. File-based (top) and line-
based (bottom) lavouts

32

Visual
mapping

different color
encodings on a
zoom-in of the
line-based layout
In Figure 7

b) <)

Figure 8: Attribute encoding: a) line status: b) construct.

¢) author

33

. ’ '

“Weakness(es) and strenght(s)

(-) the images In the paper not very clear,;
difficult to understand the details

(+) the large amount of information
compressed in a few pages

e

JIhe-main experimental question that the

.« authors asked and why did they ask this
L ~—QFLI;Q§T.IQQ -

rot it
':_xf"}'-" 3

HOW developers can be enabled to get
Insight in the changes of the source code?

BECAUSE

> to facilitate the understanding of the
status, history and structure better

> to instance the roles played by various
contributors

35

—

’ The method the authQrs used to

ol address their QL@-IGLL

using multiple correlated
views on the evolution of a
software project

B

. LIRSS

" The result of this paper

line-based evolution visualization of code
supports a quick assessment of the
Important activities and artifacts produced
during development, even for users that had
not taken part in any way in developing the
examined code

37

~~Anew question that is revealed

P .

®

how can be tested the
? efficiency of this approach
e for real world use cases?

2! 5 0

T
"Aquestion that remains

3
-\
<O~
\ \\.
At Y \!
FOf
fo

« partially unanswer

how to extend this approach
with higher-level overviews,
such as whole-project evolution
visualizations, to enable
evolution analyses on entire
systems?

e

""G’Iram

1]
o

Thank you for you
attention!

Q\|1|El||.|¢\ﬁ'\‘]r|ﬂ["
,‘\
o \(5\ 4 !G;q
i & 05 9y,
B r.
g a9z,
S =
P A
o 7
' , G T
o) ‘0, Ji w\' \u
; . 0 A0
2 U, ¥ : «Q-"\'!.
&) 1070 Ao AoV
] : o 10 'v"'.‘-‘- QI.U
u lLl.rj 0101 m.|1|1.\.

