
Software Visualization

Alexandra Tamas

1105037



A presentation of the papers:

Software Visualization in the Large,

Thomas A. Ball and Stephen G. Eick, IEEE 

Computer 29(4):33-43, 1996

CVSscan: Visualization of Code Evolution,

Lucian Voinea, Alex Telea, and Jarke J. van 

Wijk, Proc. SoftVis 2005, p 47-56.

2

http://research.microsoft.com/en-us/um/people/tball/papers/softvis.pdf
http://www.cs.rug.nl/~alext/PAPERS/SoftVis05/paper.pdf


Questions that are 
about to be 

answered in the 
next 15 minutes:

3



What are the papers about?

What is the thesis (main point) of these papers?

What are the weaknesses of these works?

What are the strengths of these works?

How could these works be applied?

What was the main experimental question(s) that the 

authors asked?

Why did they ask this question?

What method(s) did the authors use to address their 

question(s)?

What results did they obtain?

What new questions are revealed?

What questions remain unanswered?

4



Paper 1:
Software Visualization in the 

Large,
Thomas A. Ball and Stephen G. 

Eick, IEEE Computer 29(4):33-43, 
1996

5

http://research.microsoft.com/en-us/um/people/tball/papers/softvis.pdf


Software Visualization in the

Large

Visualization:

help software engineers cope with
complexity

increase programmer productivity.

Software visible through:

• the display of programs

• program artifacts

• program behavior

6



Software Visualization in the

Large

Visual representations can make the

process of understanding software easier

Basic properties of software to be visualized:

• Software structure

• Run-time behavior

• The code itself

7



Algorithm visualizations

• usually hand-crafted

• require understanding the code before

visualizing it

• infeasible for large systems or tasks

involving programmer discovery

8



Visual representations for code

• Line Representation

9



Visual representations for code

• Pixel Representation

10



Visual representations for code

• File Summary Representation

11



Visual representations for code

• Hierarchical Representation

12



Ways productivity can be increased

through Software tools

• code discovery

• highlight of regions that exhibit \code

decay

• identify the current development activity

• inspect code to ensure that it meets

coding standards.

13



Program comparison

14



Program comparison

15



Program profiles and code coverage

16



Program Slices

17



Weakness(es) and strength(s)

(-) most part of the images at the end of the

paper and not right after the corresponding

paragraph

(+) the neatly arranged writing and the good

documentation

18



The main experimental question that the

authors asked and why did they ask this 

question

HOW to understand complex system

behavior from code?

BECAUSE

• understanding,

• changing,

• and repairing

code in large systems is time consuming and

costly

19



What method did the authors use 

to address their question?

description of four innovative visual

representations of software that:

scale to production-sized systems

illustrate their usage in five software

case studies

20



How could this work be applied

to help software developers working on Bell 

Laboratories 5ESS product

21



Result

software visualization is important because

most software artifacts are naturally invisible

22



A new question that is revealed

HOW to make maximal 
use of all available screen
real estate by using every
available pixel to convey
useful information about
software?

23

?

?



A question that remains partially

unanswered

the graph layout problem, that is the most

diffcult aspect of showing software through

graphs

24



25

Paper 2:
CVSscan: Visualization of

Code Evolution,
Lucian Voinea, Alex Telea, 

and Jarke J. van Wijk, Proc. 
SoftVis 2005, p 47-56.

http://www.cs.rug.nl/~alext/PAPERS/SoftVis05/paper.pdf


What is the paper about

• Section 2 : a review of the line-based visualization 
tools for software evolution and their challenges

• Section 3: introduction of CVSscan, a tool 
developed to test and validate the proposed 
visualization techniques 

• Section 4: results of two case studies. These 
studies show how the approach can be 
successfully used to investigate the evolution of 
files from real life software projects

• Section 5: summarizes the novel contribution 
brought to software evolution visualization and 
outlines future directions of research

26



CVSscan: Visualization of Code 

Evolution

• during the life cycle of a software system, the 
source code is changed many times

• in the last decade, maintenance and 
evolution exceeded 90% of the total software 
development costs

• the corrective approach aims to facilitate the 
maintenance phase, and is supported by 
program and process understanding and fault 
localization tools, e.g. 

– SeeSoft,

– Aspect Browser

– Tarantula
27



CVSscan: Visualization of Code 

Evolution

• industry practice studies have shown that 

maintainers spend 50% of their time on 

understanding this code

• a novel concept, the bi-level code display 

that gives a detailed view of 

the contents of a code fragment 

its evolution in time

28



Visual mapping

29

• No indentation and line length to suggest 

code structure, BUT a fixed-length pixel 

line for all code lines and color to encode 

structure



Visual 

mapping

• visualize on the same 

screen all versions that a 

file has during its 

evolution, instead of all 

files in a project at a 

given time

visualize on the 

same screen all 

versions that a 

file has during its 

evolution, instead 

of all files in a 

project at a given 

time

30



Visual mapping

31



Visual 

mapping

• the CVSscan

visualization of a file 

evolution through 65 

versions
the CVSscan

visualization of 

a file evolution

through 65 

versions

32



Visual 

mapping

different color 

encodings on a 

zoom-in of the 

line-based layout 

in Figure 7

33



Weakness(es) and strenght(s)

(-) the images in the paper not very clear; 

difficult to understand the details

(+) the large amount of information 

compressed in a few pages

34



The main experimental question that the

authors asked and why did they ask this 

question

HOW developers can be enabled to get 

insight in the changes of the source code?

BECAUSE

to facilitate the understanding of the 

status, history and structure better

to instance the roles played by various 

contributors

35



The method the authors used to 

address their question

using multiple correlated 

views on the evolution of a 

software project

36



The result of this paper

line-based evolution visualization of code 

supports a quick assessment of the 

important activities and artifacts produced 

during development, even for users that had 

not taken part in any way in developing the 

examined code

37



A new question that is revealed

how can be tested the 

efficiency of this approach 

for real world use cases?

38

?

?



A question that remains

partially unanswered

how to extend this approach 

with higher-level overviews, 

such as whole-project evolution 

visualizations, to enable 

evolution analyses on entire 

systems?

39



Thank you for your

attention!


