
YSOC-VIS - A Visualization of the Classification of Young Stellar Objects
Lorenz J. Linhardt∗

University of Vienna

ABSTRACT

This document introduces YSOC-VIS, a Java application for vi-
sualizing the classification of young stellar objects. Its purpose is
to support interactive, visually guided model and feature selection.
First the problem is introduced, then the general design and specific
choices are discussed and lastly future improvements are suggested.

Index Terms: Visualization, Clasification, Feature Selection,
Model Selection, Young Stellar Objects

1 MOTIVATION

The development of young stellar objects(YSOs) has been subject
to recent research, and until now their classification has been con-
ducted manually by astronomers. This involves looking at images
of the stellar observations coloured with respect to different infra-
red wavelength spectra, looking up the observation in color-color
plots, where the strength of the infra-red emissions of single ob-
servations are pairwise plotted against each other, and looking at
so-called spectral energy distribution curves for each observation.
For researching YSOs it is important to know which stellar observa-
tions are YSOs and to which class they belong, but it is understand-
able that the large quantity of observations cannot all be manually
labelled by humans; at least not in a reasonable time and with the
current work flow. To combat this limitation and to free up addi-
tional resources, astronomers are trying to automate the classifica-
tion process so that the majority of the work is done by machines
and only unsure labels have to be reviewed by the domain experts.
YSOC-VIS is designed to support the domain experts in finding a
feasible classification model.

Users The target user of YSOC-VIS are astronomers without
in depth knowledge of machine learning and whose interests lie
in classifying stellar objects. At present there are the two specific
astronomers at the University of Vienna who are the intended users
and in collaboration with whom this tool is being designed.

Goals The users’ ultimate goal is the classification of stellar
objects based on data from various telescopes and data derived
therefrom. They are interested in the distinction between the classes
of YSOs and everything that does not belong to these classes. The
goal of YSOC-VIS to support them in finding a suitable model for
classification without having to posses extensive knowledge about
machine learning. It is designed to enhance the current workflow
of finding classification models by letting the user explore a space
of multiple possible models instead of trying out different models
one-by-one.

Data It has been attempted to formulate a data abstraction[10,
chapter 2], in which the general properties of the available data are
described.

The data is stored as table in a static file, where each table row,
or item, represents a stellar observation and each column an at-
tribute of the observations. There are about 800.000 rows and 200

∗e-mail: pflaenzchen@hotmail.com

columns, but only a small fraction of the observations is labelled, so
that there are only a few hundred rows per class of YSO and only a
few thousand classified as certainly not being a YSO. The attributes
in the table are comprised of various data types, containing numeric
types of different bit-lengths, single characters and character string.
Most of them represent measurements at different infra-red wave-
length regions and attributes derived from them. The contained at-
tributes are of different types, covering both categorical and ordered
data. Also not all attributes are semantically independent, e.g. for
some columns there are additional attributes describing how un-
certain their value is. For the proposed solution, additionally to
this heterogeneous table, there is derived data, namely the models
that are being built and especially their performance and confidence
measures, which are represented as quantitative, sequential floating
point numbers.

Notation To keep this document consistent and understand-
able, the word ”observation” or ”source” will denote a row of the
data table and ”attribute” a feature of a table row represented by a
column. Also ”parameter” will be used for the parameters and hy-
per parameters of the classification algorithm; in the current imple-
mentation this is the k of the k-nearest-neighbour algorithm, as this
is the classification algorithm being used. ”Variables” will stand for
both parameters and attributes. Regarding classification, ”model”
will be used for the combination of a classifier, a configuration of
its parameters, and a list of attributes being used for training.

Tasks It follows an attempt to generalize the tasks the user
needs to perform, to provide a clearer picture of what has to be
achieved and also as guidance for further design steps. The Task
abstraction is based on [10, chapter 3] and abstractions proposed in
this book are written in italic.

Consume: The user needs to discover which subset of attributes,
and which parameters result in the most accurate prediction. To do
this it is essential to be able to compare the performance of variables
or models. This could be done by either listing them ranked by
some performance metric or displaying their performance against
a common scale.At least for the latter case, the user also needs to
be able to filter out interesting subsets of the data for more visual
clarity. This can be accomplished by either manually selecting parts
of the displayed models or variables, or by restricting the range of
parameters and attributes being considered for display.

Search: In the process of discovery, the user has to be able to
explore the data, most likely looking for clusters, outliers or simi-
lar patterns. Finding patterns, even though this does not necessarily
mean finding variables that perform well, can help the user by point-
ing out inherent properties of their data or its interaction with the
classifier. This knowledge can be useful to steer the further inves-
tigation or even raise questions outside the scope of classification.
Hence the dimensions in which patters could emerge and be of in-
terest should be encoded in a way that makes it easy to spot those
patters and it should be possible to find out what caused the pattern,
e.g. by selecting the data points forming it, and showing details
about them on demand.

Query: To enhance the exploration process, the VIS-system
should provide a way to summarize the displayed data, providing
an overview for the user, who can then look into the portion of the
data they deem interesting. This can be accomplished by providing

an additional view that aggregates the displayed data and provides
a way to select or filter on aggregations to display. Also the user
should be able to identify data points, e.g. models, returned by the
search process, as they are ultimately interested in the properties
that led to that item being selected.

Produce: Furthermore the VIS-system needs to produce an out-
put, to be used as input for the classifier. This could be by deriving
a list of attributes and model parameters that the user found to per-
form well.

2 RELATED WORK

Unsurprisingly there are already a number of different approaches
to interactive visual classification proposed and implemented.

One interesting approach is StarClass[16]. This visualization
tool represents the training data as points, coloured according to
their class in star coordinates[8] and allows the user to construct
classification rules, by dragging the coordinate axes and thus chang-
ing the projection of the data, until the classes are visually sepa-
rated. Unfortunately StarClass only works for numeric attributes
and scalability beyond 19 attributes has not been evaluated, but it
seems unlikely that this approach would scale up to the amount at-
tributes in the stellar observations dataset.

A different approach has been proposed for interactively con-
structing decision trees[3]. Again the authors lay out the attributes
radially, but not in the form of axes, but as triangular segments.
Pixel positions within each segment correspond to a value of the
respective attribute, and the color of the pixel is determined by the
class of the data point with the corresponding attribute value. The
user can then iteratively split on segments were they see a sepa-
ration of classes dependent on the attribute value. This approach
also is likely to lead to scalability problems with large amounts of
attributes.

The solution proposed in this document is built upon ideas and
visualization concepts proposed by other authors, which are dis-
cussed in the rest of this section.

Scented widgets[18] are an enhancement of ordinary GUI wid-
gets. The idea is to visually encode additional information directly
at the widget, without changing the functionality of the widget and
ideally without using up much more space than the base widget.
A similar approach, but more specialized approach are Data Visu-
alization Sliders[4], which specifically use the inside of sliders to
provide a visualization of the data belonging to the slider.

The representation of uncertainty has been discussed and empir-
ically analysed by a number of authors[9] . Often with a focus on
discrete data points in an uncluttered environment. For those cases
blurriness seems to be a good choice of encoding uncertainty. One
way of encoding uncertain in two dimensions, given multiple esti-
mations of the true value have been made, are standard deviational
ellipses[17], where ellipses are fit to the variance of the data points
in both scale and rotation, and additionally scaled by a factor to
represent an arbitrary confidence interval. This approach has been
chosen to represent uncertainty in respect to two performance mea-
sures in YSOC-VIS, as it allows to give the representation direction
and also can easily be added to and removed from the visualization
to adapt to clutter without changing the basis representation for the
objects that are uncertain.

The idea of coupling widgets for conducting queries and visu-
alizations has been around for quite some time[2] and the aspects
of tight coupling have been discussed and implemented in the fa-
mous FilmFinder[1], which the proposed solution resemble to, even
though the problem is not exactly the same. One of the ideas regard-
ing tight coupling is that the state of the widget and the state of the
visualization should always be connected, i.e. if the user changes
the state of the widget, this should immediately be reflected in visu-
alization and changing aspects of the visualization should promptly
be propagated to the widgets corresponding to these aspects. Also

interactions with tightly coupled components should be reversible
and allow for incremental refinement of the results.

Another idea YSOC-VIS is incorporating is visual parameter
space analysis and especially some ideas introduces as a conceptual
framework[12]. In this framework a general abstraction of visual
parameter space analysis is proposed in form of a data flow model
and strategies for navigating the resulting data space are identified.
YSOC-VIS uses some of the ideas presented in the framework, such
as replacing a workflow based on informed trial and error, e.g. test-
ing different classification models one-by-one and adapting to what
worked, with an expensive, but fully offline process, consisting of
sampling the space of possible inputs and generating correspond-
ing outputs, which are then analysed in bulk, based on the inputs
used to produce them. Another idea formalized in this framework
and included in YSOC-VIS is the global-to-local exploration of the
result space, starting from an overview of all generated outputs and
from there on identifying and focusing on the more promising ones.

3 METHODOLOGY

The methodological approach roughly follows the steps suggested
in[13], in which a nine-stage design study methodology framework
has been proposed. The stages are grouped in three categories: Pre-
conditioning is the phase of preparing for the design study and find-
ing suitable collaborators. The Core phase is where solutions are
developed in collaboration with the chosen domain experts, then
implemented and evaluated. In the Analysis phase the knowledge
won in the design study is being identified and brought into a struc-
tured form so that others may benefit from it.

Although this document is an artefact of the Analysis phase, the
majority of work on YSOC-VIS has been conducted in the Core
phase. Specifically in the discover, design, and implement stages.

Discover In the discovery stage an attempt was made in col-
laboration with the domain experts, to find out what the concrete
problem is that has to be solved, how this problem can be abstracted
to higher level problems, what data is available and who the poten-
tial user of YSOC-VIS are. This has been done via discussion with
the domain experts.

Design In the design phase, paper prototypes of possible so-
lutions were made and iteratively refined based on feedback from
the domain experts. It was tried to first present a broad space of
possible solutions to the domain experts and to then narrow it down
through discussion until it finally converges to a potentially good
solution.

Implement The result of the previous phase has been imple-
mented in software and progressively improved through feedback
from the domain experts and additional usability considerations.

The next steps would be to deploy the application and gather
additional feedback, and after some further improvements, to eval-
uate its usefulness.

4 APPROACH

The high level concept of the proposed solution is to sample an
user-constrained space of possible classification models, evaluate
their performance and to visualize them dependent on this perfor-
mance. The sampling is being done quite coarsely, as the space to
cover is so large, that finer or even exhaustive sampling is not pos-
sible. After a seizable amount of models has been built, the user
should be able to interactively explore the visualization and inves-
tigate the best performing models. Based on their investigation, the
user can try to identify causes for good model performance, change
the sampling constraints accordingly and rerun the sampling until
they have found a satisfying solution.

What should be noted is that the sampling and evaluation of mod-
els is a very time consuming process, but it requires no further user

interaction, so the user does not have to invest time to actively take
part in this step.

Furthermore the application should enable the user to take the
same preprocessing steps they are conducting in their current work-
flow. That is, defining so called error-cuts on the input table. Error-
cuts are simple rules that are used to filter out observation with un-
desired properties. An example would be disregarding all obser-
vations where the value of an attribute that is semantically associ-
ated with pollution of the observation, is above a certain threshold.
These error-cuts are made by the experts based on domain knowl-
edge.

In the current workflow these error-cuts reduce the data used for
model selection dramatically - usually to a few thousand observa-
tions - which is due to the fact that the vast majority of the data is
unlabelled and additionally significant cuts are made on noise and
pollution attributes.

In this project, defining the class membership of observations
is also seen as part of the preprocessing, since taking appropriate
error-cuts is dependent on this definition.

Figure 1 schematically shows the proposed workflow steps. The
steps with white boxes require user interaction, the one in a grey
box is done offline.

Figure 1: workflow

5 IMPLEMENTATION

The implementation has been done in Java, which was chosen for
its portability and direct access to various toolkits. For the modules
regarding machine learning the Weka toolkit[6] has been used. The
GUI has been created using the GUI widget toolkit Java Swing and
extended with plots made with JFreeChart[5].
Furthermore, since the .fits[11] file format, which has been chosen
because it is already used in the users’ workflow, is the format of the
data table, the STIL and STILTS[15] libraries, that are specialized
in handling this format, have been used.

6 RESULTS

6.1 Preprocessing Screen
The preprocessing screen shown in figure 2 is the first part of the
program the user comes into contact with when starting the applica-
tion. After loading the data table from their file system, the user can
define inputs to the preprocessing on the left side and see its results
on the right side. These kinds of grouping of either functionality or
semantics are done throughout the design, even though this is not
always done by spacial grouping of elements.

The definition of the target class, which is the class that the re-
sulting models should be able to identify, is done at the top of the
left panel via a Boolean expression, as can be seen in figure 3. This
form of input has been chosen, because it is simple and yet allows
to define very complex subset selection. Furthermore this kind of
subset-selection of tables is already used in topcat[14], a tool for
editing tables of astronomical data, which is frequently used by the
domain experts.

Consideration have been made to replace this form of input with
a less error prone and more intuitive approach, but so far no input

Figure 2: Preprocessing Screen

Figure 3: The area for defining the target class. The syntax can be
checked for correctness with the button on the right.

interaction has been found that could easily be used to produce in-
puts of the required complexity for the given amount of attributes
in the data, without dramatically increasing the time the user needs
to spend on the interaction.

Figure 4: A row of GUI elements for defining an error-cut.

The majority of the left panel leaves room for defining error-
cuts. This is done via rows of GUI elements, as shown in figure 4.
In each row, the user can define a simple Boolean rule for filtering
out observations. Observations that fulfil at least one of the rules
are ’cut’ from the table.

To define an error-cut, the user can select an attribute to base the
error-cut on from a combo-box. Next to this they can select one of
the following operators <, >, !=, ==, where the first two can only be
chosen if a numeric attribute has been selected. Further on the right
appears a text field where the user can type in a value for numeric
attributes, or select a predefined value for nominal attributes, i.e.
attributes that have been saved as character or character string in
the table.

For each error-cut the user can choose to also cut away all ob-
servations that have an illegal, or NULL value for the selected at-
tribute. This could be because the table cell is empty or the value
in the table cell is set to a value defined as NULL-value in the file
header.

Below the bottom most error-cut row there is a button for adding
new error-cut rows. Also, next to each error-cut row there is a but-
ton for deleting it.

For the simple expressions used in error-cuts it is feasible to use
more advanced GUI elements for defining the expression, as there
are no complex connections between or groupings of statements.
In this case restricting the input through the GUI elements adds the
benefits that the user cannot make syntactically incorrect expres-
sions and also for categorical attributes it is easier to select a value

from a predefined list than to type it.

Figure 5: Histograms act as visual support for the error-cut genera-
tion.

On the right side of the preprocessing screen the user can see
the distribution of observations over the attribute they are cutting
on. Superimposed in red is the distribution over the same attribute,
but just for the observations that have been cut-away. There is one
histogram for the observations defined as target class and one for
the rest.

Additionally there is a bar at the bottom of each histogram that
shows the ratio of observations before and after the error-cuts.
Again, the part that is cut-away is encoded in red.

The reason for splitting the histograms into target class and rest
is that the target class, which is the sensitive part when creating
error cuts, has usually only so few members, that it would be hard
to make them visible in the same plot as the rest.

Also the additional bar below the histogram was placed to explic-
itly make it visible how many observations are remaining. What
also plays a role here is that the domain experts already know
roughly how many observations to expect after a cut, so by plac-
ing the exact number in the bar, it makes it easier for them to tell if
the error-cuts they have made match up with what they usually do.

The plot for the target class has been placed above the other one,
as it semantically belongs more to the target class definition, which
is at the top of the left panel.

6.2 Model Explorer Screen

Figure 6: Model Explorer Screen

The model explorer screen is where most of the interactions take
place. It contains widgets that allow the user to steer the sam-

pling process and to filter out uninteresting models. All widgets
that change the sampling process are coloured in the same orange
tone. This color marking has been done to signal that those widgets
form some kind of unit, even though their placement is not grouped.

Most prominently is the performance plot in the middle. Here all
generated models are plotted according to their performance.

6.2.1 Attribute Panel

Figure 7: The selection of attributes to be sampled from.

The attribute panel on the left side of the model explorer screen,
as seen in figure 7, enables the user via combo boxes to define
which attributes should always be used in the the creation of mod-
els and which should be randomly sampled from. Any attribute for
which the user does not specify the sampling behaviour is never
used in the sampling process. All attributes for which the user has
defined the sampling behaviour are listed below the combo boxes.
The background color for each attribute signifies if it was added to
the ’always use’ or the ’randomly use’ list. This is again an attempt
to visually link elements that have a connection - in this case they
are sharing the same state. The user can also change the list mem-
bership of any attribute displayed via a context-menu, activated via
the right mouse button. As soon as models are being created, a bar
appears next to each attribute in the list, encoding how often the
attribute has been used in all created models. This is also explicitly
shown as a number next to the bar.

Figure 8: Semantic groups for easier navigation selection of at-
tributes.

In figure 8 we can see the lower part of the attribute panel. This
part only appears if the user loads a file in which attribute groups
are specified. As the application cannot automatically detect those
groups and it is not made to only work with one single, never chang-
ing set of attributes, the user has to specify semantic groups and
attribute memberships to these groups manually in an external file.

Each group can be expanded and collapsed on click and contains
a list of attributes like the one describe previously. The reason for
using semantic groups is that they make it easier for the user to find
specific attributes than looking through all possible attributes in the
combo-box and they allow to specify the sampling behaviour for
whole groups at once via a context menu.

There are two additional buttons in the attribute panel which are
not connected to attribute selection. One is the ’Play’ button at the
bottom left, which starts the sampling process. Its placement at the
bottom of the screen has been chosen because in western societies
humans are used to doing things from top to bottom, and starting the
sampling is not something users would want to start their interaction
with. So it makes sense to put the button at the ’end of the page’
and create an environment with a more familiar logic.

The placement of the second button at the top left has similar
reason. It is the ’Back’ button, leading to the preprocessing screen.
Its placement to the left is due to the fact that at least in western so-
cieties, humans are used to progress from left to right and also most
applications and web-pages place back-buttons on the left side. The
choice of vertical alignment was made to avoid that users acciden-
tally hit the back button when they actually want to start or stop the
sampling.

6.2.2 Performance Plot

Figure 9: A section of the performance plot showing models as points
with standard deviational ellipses and additional widgets for disabling
the ellipses and deleting all contents of the plot.

Most of the area of the model explorer screen is covered by the
performance plot as this is where smaller differences in the po-
sition of the marks are important. The the axes of the plot are
’Completeness’, which equals to the probably more common re-
call, and ’Contamination’, which corresponds to 1 minus precision.
These measures have been chosen because the domain experts are
already familiar with them and they are common in the astronomy
community[7, p. 387].

When the user has started the sampling process, models will be
created one-by-one under the user defined constraints and evaluated
via cross-validation. They are then placed as point-marks in the per-
formance plot (see figure 9) where their position encodes their per-
formance and their color encodes the uncertainty of their position.
Red stands for high uncertainty, gray for medium and blue for low
uncertainty. Ideally the encoding would have been done by using
a channel with intrinsic order, but as luminance and saturation are
hard to distinguish for points so small and variability in size would
increase clutter if many point are plotted, the most important chan-
nels have been ruled out and currently hue seems to be a reasonable
choice as it is distinguishable and does not add to clutter.

Furthermore, standard deviational ellipses are shown around
each point to signify a confidence interval in which the model
would most likely lie if it would be evaluated again. These vari-
ances in performance for one model are due to the randomness in-
volved in cross-validation.

As the ellipses tend to quickly clutter the plot, the can be turned
off via a check box. Also the points are drawn with a black border,
which makes them more visible against cluttered background.

The only direct interaction with the plot that is provided is the
ability to draw a frame to select multiple models. This selection
has an effect on many widgets. One example is the list on the at-
tribute panel that only shows the attributes and their frequency for
the models in the selection.

6.2.3 Filter Panel

The filter panel resides on the right side of the model explorer
screen. It mainly allows for filtering the performance plot, but also
for setting some of the sampling constraints, as indicated by the
orange coloured widgets, and it also displays some data about the
selected models.

Figure 10: Semantic unit regarding the length of the attribute vector.

There are two widget groups as presented in figure 10. One for
the range of the parameter k and one for the length of the attribute
vector to create models from. Their spatial grouping should signify
that they form a unit. The spinners at the bottom can be used to set
constraints for the sampling process regarding this parameter. The
range sliders can be used to filter out models not falling within a cer-
tain value range of the parameter represented by the group. Those
models are not being displayed in the performance plot. The sliders
are additionally enhanced by a histogram showing the distribution
of the created models over the parameter.

The rational behind including the histogram was that it should
make it easier to identify anomalies if they can be discovered in
a histogram, rather than by moving the slider back and forth and
observing how the performance plot changes.

Superimposed over the distribution of all the models is the dis-
tribution of the selected models in yellow. The color was chosen to
match the color of the selection rectangle in the performance plot,
so that the user can more easily see a connection between them.

Also it was decided to keep the overall distribution as context to
make it easier to spot anomalies in the selection.

If the overall distribution is much higher than the distribution of
the selection, the user can choose to sacrifice context for a clearer
view on the selection and use the small yellow button next to the
histogram to only show the yellow bars. The functionality of the
button might not be clear at first, but again, the color should serve
as a hint. Clicking the button also turns it dark gray to indicate a
connection to the hidden bars.

The yellow bars of the histogram are framed in black to increase
their visibility against the background, as this can be an issue on
some screens.

Below the widget groups there are sliders to filter out models by
the standard deviation of the performance of their cross validation
results. They make it possible to hide models for which the perfor-
mance estimation is too uncertain.

At the bottom of the filter panel there is the performance of the
selected models displayed in concrete numbers. If no selection has

been made on the performance plot, the shown metrics are the av-
erage of all models.

Performance and Feedback As YSOC-VIS is still work in
progress, the performance of the tool has not yet been evaluated
and there were only minimal interactions of the users with the tool.
Gathering results is one of the next steps in the development pro-
cess.

Still there are some suggestions by the domain experts, most of
which are not implemented in the current version of the tool, but
are planned to be introduced in the future.

Probably the most important suggestion is the addition of views
in which the domain experts can see the model evaluation results
in views they are used to, and in relation to the original, real-world
attributes contained in the data table.

Also it has been requested to add the functionality to derive at-
tributes from already existing ones. This is due to the fact that the
domain experts often work with the difference of magnitude be-
tween wavelength regions, which is not explicitly saved in the data
table.

Feedback from the domain experts also led to the reconsideration
of some notational choices, such as the discussed labelling of the
performance plot axes.

Some observations about the current scalability of the tool have
been made, although no rigorous testing has been conducted, as
optimization of performance was not yet the focus of development.
The model evaluation process works in reasonable speed for at least
up to 10.000 observations remaining after the error cuts. It has to
be noted though, that the time needed to evaluate a model is very
much dependent on the size of the attribute vector that is used for
training and also on the configuration of the cross validation, which
is currently defined in the code as one run of ten folds. Also it
has been reported that using 50.000 observations leads to infeasible
model evaluation times of several minutes per model.

The amount of models already being built and displayed does
not impair the interactions up to at least 3.000 models, given that
the confidence ellipses are not being displayed.

7 DISCUSSION

7.1 Strengths and Weaknesses
There are still many aspects of the tool that await implementation or
improvement. Also, the list of strengths and weaknesses presented
here will probably be subject change when handing the tool to the
user.

The preprocessing screen will most likely have to undergo some
changes, as it is a tedious process to define error cuts and creating
a class definition much resembles to coding. The widgets used also
provide no mental model for the actual value ranges. Even though
it is obvious that this part of the tool is not an optimal solution, pro-
viding a light and efficient input interface for complex expressions
is not a trivial task and improvements will be made in the future.

Another weakness is that there is still no view on the original
attributes the domain experts are familiar with. Without those views
it is hard to mentally set the model performances into the context of
the real problem and observable patterns in misclassifications might
just not be found.

Furthermore the low performance of the tool is definitely a weak-
ness. Especially in the preprocessing screen there are noticeable de-
lays when updating the plots, but also in the model explorer screen,
although not visible from usability standpoint, higher performance
would increase the amount of models built per time-step.

Also it is not possible to classify unknown samples wit a cho-
sen model, as the current focus is exclusively on model and feature
selection and not on the real-world application of the model.

Moreover, k-nearest neighbour is the only classification algo-
rithm available to the user at the moment. As other algorithms
might yield better results, this is a severe limitation.

On the positive side, YSOC-VIS uses a quite general approach
and is mostly detached from the original domain, although it is be-
ing developed with a target application and dataset in mind. This
makes the tool usable in other areas too, if it is found to be useful.

Also, even though it might not be ’intuitive’ at first, the interac-
tions in the model explorer screen are already in a state that makes
it easy to manipulate performance plot. Although there are still re-
finements to be done, the current usability could be considered a
strength.

The tool also allows for quickly trying out different attribute sets
and parameter choices, so even if it is used to experiment with sin-
gle model choices at a time, this should be quicker than making
those tests in code.

7.2 Lessons Learned
One thing about the implementation of projects like this that be-
came more and apparent is that writing clean code really is not that
important, as most modules are frequently subject to change any-
way. However, building a solid architecture from the start would
have helped performing later changes more quickly.

Another aspect to consider is that conducting rigorous task ab-
straction and identification of the goals of the project early on is
immensely important. If the task is unclear, much effort is wasted.

Also, while keeping a tight feedback loop might be something
obvious, one should not underestimate the improvements possible
through this practice. What was new to me in this regard is that the
people to gather feedback from do not necessarily have to be poten-
tial users of the system. Showing the tool to non-users also catches
some usability aspects that that would have stayed undetected oth-
erwise.

Moreover, gathering feedback in general is not always an easy
task. Especially if the people giving feedback are not used to evalu-
ating software. Overcoming experimental demand characteristic
effects[13] where one would get mostly positive feedback when
working with the domain experts for a longer time, is also some-
thing to watch out for.

Furthermore, especially if one is new to the field, planning
enough time for literature research is crucial. As there are many
handy ideas already implemented and building upon knowledge of
others is the only to avoid reinventing the wheel.

8 FUTURE WORK

As this project is ongoing, there are still many steps to be taken,
some of which are listed in this section. To provide more clarity,
the future steps are divided into implementation and analysis steps,
though it has to be noted that this division is only to provide struc-
ture and does not mean that these two categories are independent of
each other.

Also continuous improvement of the usability and the underlying
abstractions is implied.

Implementation Steps One major change that is planned, and
based on feedback of the domain experts, is the introduction of ad-
ditional views, where the user can see the distribution of correct and
incorrect classifications plotted against an attribute of their choice.
Also they should be enabled to view the results of the classification
in the color-color plots they are used to. These views could help
identify patterns in the misclassifications, which in turn could lead
to different choices of error-cuts and sampling constraints.

Furthermore it is planned to let the user control the evaluation
precess, especially the number of folds and the the number of cross
validation runs used.

Also the sampling has to be improved, as it currently just uni-
formly samples the space of variables. More sophisticated sampling
strategies could yield better results and using heuristics to first sam-
ple the most promising portion of the model space could accelerate
the workflow.

Finally, optimization of the application should be conducted to
increase the usability through better responsiveness and to acceler-
ate the sampling and evaluation of models. This will be done by
refactoring the code and additional exploitation of parallelism.

Analysis Steps One of the next steps to be taken is to deploy
the YSOC-VIS to the domain experts and gather feedback about
this early use of the tool. This will show if the work that has been
done until now was successful and also provide direction for future
improvements.

Eventually there will also be a more formal evaluation of the tool
to determine if it really enhances the workflow of model selection
in this context.

It is also planned to create a polished reflection about the project,
the methods used and findings made by refining and improving on
this document in the future.

REFERENCES

[1] C. Ahlberg and B. Shneiderman. Visual Information Seeking: Tight
Coupling of Dynamic Query Filters with Starfield Displays. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’94, pages 313–317, New York, NY, USA, 1994. ACM.

[2] C. Ahlberg, C. Williamson, and B. Shneiderman. Dynamic queries for
information exploration: An implementation and evaluation. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’92, pages 619–626, New York, NY, USA, 1992. ACM.

[3] M. Ankerst, C. Elsen, M. Ester, and H.-P. Kriegel. Visual classi-
fication: An interactive approach to decision tree construction. In
Proceedings of the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’99, pages 392–396,
New York, NY, USA, 1999. ACM.

[4] S. G. Eick. Data visualization sliders. In ACM Symposium on User
Interface Software and Technology, pages 119–120, 1994.

[5] D. Gilbert. JFreeChart. http://sourceforge.net/projects/jfreechart.
[6] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

Witten. The weka data mining software: An update. SIGKDD Explor.
Newsl., 11(1):10–18, 2009.

[7] Ž. Ivezić, A. Connolly, J. Vanderplas, and A. Gray. Statistics, Data
Mining and Machine Learning in Astronomy. Princeton University
Press, 2014.

[8] E. Kandogan. Star coordinates: A multi-dimensional visualization
technique with uniform treatment of dimensions. In In Proceedings
of the IEEE Information Visualization Symposium, Late Breaking Hot
Topics, pages 9–12, 2000.

[9] A. M. MacEachren, R. E. Roth, J. O’Brien, B. Li, D. Swingley, and
M. Gahegan. Visual semiotics & uncertainty visualization: An empir-
ical study. IEEE Transactions on Visualization and Computer Graph-
ics, 18(12):2496–2505, 2012.

[10] T. Munzner and E. Maguire. Visualization analysis and design. AK
Peters visualization series. CRC Press, Boca Raton, FL, 2015.

[11] W. D. Pence, L. Chiappetti, C. G. Page, R. A. Shaw, and E. Stobie.
Definition of the Flexible Image Transport System (FITS), version
3.0. Astronomy & Astrophysics, 524:A42+, 2010.

[12] M. Sedlmair, C. Heinzl, H. Piringer, S. Bruckner, and T. Möller. Vi-
sual parameter space analysis: A conceptual framework. IEEE Trans-
actions on Visualization and Computer Graphics / Proceedings IEEE
InfoVis 2014, 20(12):pp. 2161–2170, 2014.

[13] M. Sedlmair, M. Meyer, and T. Munzner. Design Study Methodol-
ogy: Reflections from the Trenches and the Stacks. IEEE Trans. Visu-
alization and Computer Graphics (Proc. InfoVis), 18(12):2431–2440,
2012.

[14] M. B. Taylor. TOPCAT & STIL: Starlink Table/VOTable Processing
Software. In P. Shopbell, M. Britton, and R. Ebert, editors, Astronom-
ical Data Analysis Software and Systems XIV, volume 347 of Astro-
nomical Society of the Pacific Conference Series, page 29, 2005.

[15] M. B. Taylor. STILTS - A Package for Command-Line Processing of
Tabular Data. In Astronomical Data Analysis Software and Systems
XV - ASP Conference Series, volume 351, pages 666–669, 2006.

[16] S. T. Teoh. StarClass: Interactive Visual Classification Using Star
Coordinates - CiteSeerX. Proceedings of the 3rd SIAM International
Conference on Data Mining, 2003.

[17] B. Wang, W. Shi, and Z. Miao. Confidence analysis of standard de-
viational ellipse and its extension into higher dimensional euclidean
space. PLoS ONE, 10(3):e0118537, 2015.

[18] W. Willett, J. Heer, and M. Agrawala. Scented widgets: Improving
navigation cues with embedded visualizations. IEEE Trans. Visual-
ization & Comp. Graphics (Proc. InfoVis), 13:1129–1136, 2007.

