

TUTORIAL: D3 (1)
Basics

Christoph Kralj
christoph.kralj@univie.ac.at

Manfred Klaffenböck

manfred.klaffenboeck@univie.ac.at

mailto:christoph.kralj@univie.ac.at
mailto:manfred.klaffenboeck@univie.ac.at

 VIS 17W TUTORIAL: D3 (1)

 1

Overview

Our goal is to create interactive visualizations viewable in your, or anyone’s, web browser. To get

content into the browser we will use HTML documents, to make them interactive we will include

JavaScript in these documents. Finally, to tend to our graphical needs, we will use D3, a JavaScript

library, for creating visualizations.

Some examples of what is possible with D3 can be found here:

• http://bl.ocks.org/mbostock

• http://christopheviau.com/d3list/

Be aware: in 2016, d3.v4 came out, which introduced some changes which are not backwards-

compatible towards d3.v3. Please keep that in mind when you browse for examples on the internet.

In this tutorial, we are going to use D3-V4.

Contents
Overview.. 1

HTML (Hypertext Markup Language) .. 2

IDs and Classes .. 3

SVG (Scalable Vector Graphics) ... 4

D3 .. 6

select() and selectAll() ... 6

append() .. 6

attr() and style() ... 7

Excursus: Debugging .. 7

data() ... 8

enter() .. 8

Anonymous functions.. 9

Storing Elements ... 9

csv() (loading data) ... 10

Conversion ... 10

Acknowledgements ... 11

http://bl.ocks.org/mbostock
http://christopheviau.com/d3list/

 VIS 17W TUTORIAL: D3 (1)

 2

HTML (Hypertext Markup Language)

Most of what we well be doing today will happen in a HTML document. HTML uses tags to structure

content and define how they are presented. Usually they look somewhat like:

<tagname> content </tagname>

Tags affect the content written between the tag opening and the tag closing (identifiable by the ‘/").

Common tags are for example for bold text, <i></i> for italic text, or <p></p> for paragraphs.

Every HTML documents needs to include some boilerplate code:

<!DOCTYPE HTML>

<html lang="en">

 <head>

 <meta charset="UTF-8"/>

 <title></title>

 </head>

 <body>

 </body>

</html>

Most things will happen within the body tag.

Mini-Exercise

Now create a HTML file including some text in the body utilizing at least one tag.

To do so:

• Create a new file on your computer

• Give it the ending .html

• Paste the boilerplate code

• Fill in some content

• See if it works in your browser

 VIS 17W TUTORIAL: D3 (1)

 3

IDs and Classes

Later in this tutorial we want to be able to address specific elements or element groups. To achieve this

we can assign attributes to tags that give them a certain identity. Attributes are defined in the first part

of the tag, after its name.

<div id="myID">This div has a unique ID. No other element can have the

same. </div>

<div class="myClass">This div has member of a class. The class can be

shared by multiple elements. </div>

The name of the class or ID is a string that can be decided by you, the developer.

A list of tags and their effect can be found here:

https://developer.mozilla.org/en-US/docs/Web/HTML/Element

More information regarding HTML is available here:

http://www.w3schools.com/html/

https://developer.mozilla.org/en-US/docs/Web/HTML/Element
http://www.w3schools.com/html/

 VIS 17W TUTORIAL: D3 (1)

 4

SVG (Scalable Vector Graphics)

SVGs are part of the HTML5 standard and provide us with the means of creating graphical elements that

can be displayed in the browser.

A main concept about SVGs is that we do not define our graphical elements pixel by pixel but rather

what element we want, e.g. a circle, and what properties it should have, e.g. size, color, … One

advantage of this approach is that resizing of the elements does not decrease their quality.

The coordinate system of SVGs has its origin at the top left corner and has its x axis to the right and its y

axis downwards.

Another important thing to note is that the depth ordering of elements is defined by the order in which

they are drawn, superimposing the new over the old ones.

To use SVGs in we first have to define an SVG element, and give it a size:

<svg width="400" height="200"> </svg>

You can think of this as a canvas.

Within the svg tag we can define graphical elements, e.g. circles, ellipses, rectangles, lines, text, …

For example:

<svg width="400" height="200">

 <rect x="0" y="0" width="75" height="75" fill="yellow" />

 <line x1="0" y1="0" x2="400" y2="200" stroke="black" stroke-

width="3" />

 <ellipse cx="250" cy="150" rx="30" ry="50" fill="red" />

<text x="100" y="100" fill="green">Sample text</text>

</svg>

x

y

SVG

 VIS 17W TUTORIAL: D3 (1)

 5

Results in:

A list of SVG elements can be found here:

https://developer.mozilla.org/en-US/docs/Web/SVG/Element

https://developer.mozilla.org/en-US/docs/Web/SVG/Element

 VIS 17W TUTORIAL: D3 (1)

 6

D3

To dynamically add SVG shapes we will use JavaScript and D3.

First we have to load the D3 library. To do that:

• Download d3: https://d3js.org/

• Unzip the folder

• Take d3.min.js and put it in the same folder you .html file resides in.

Now you can load the d3 library from within your HTML document by simply adding the following line:

<script src="d3.min.js"></script>

We can now use D3 from within a script tag. This library offers a wealth of methods to dynamically

modify the HTML document, and provides the d3 object which is needed to call them.

select() and selectAll()

To choose which objects to manipulate, D3 provides the select("mySelector") method, which returns the

first element in your document to match the selector, and the selectAll("mySelector") method that re-

turns all elements matching the selector.

You can select elements by various criteria, the most important ones being by tag, by class, and by id (we

have discussed class and id earlier):

d3.select("div") <!-- Targets the first "div" tag -->

d3.select(".class1") <!-- Targets the first tag with the class "class1"

-->

d3.select("#myID") <!-- Targets the tag with the id "myID" -->

More about select here: https://github.com/mbostock/d3/wiki/Selections

append()

Another important method is append("elementToAppend"). This method can be called on the return

value of the select() or selectAll() and simply adds new elements as children to the selected nodes.

The parameter we pass to the append() method is a string defining the type of element we want to add.

E.g.: div, p, svg, a, h1, …

Some elements might be addressed via their namespace-prefix, e.g.: svg:circle

More about append here: https://github.com/mbostock/d3/wiki/Selections#append

https://d3js.org/
https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections#append

 VIS 17W TUTORIAL: D3 (1)

 7

We can now, for example, append a new div and fill it with text:

<script>

 var body = d3.select("body");

 var myDiv = body.append("div");

 myDiv.text("Hello World!");

</script>

JavaScript allows us to do that in an even more compact way, via method chaining. This enables us to call
multiple functions (on the same object) consecutively:

d3.select("body").append("div").text("Hello World!");

Method calls are connected with periods and the output of each method is used as the input for the next

one.

attr() and style()

Each element you select can be modified with certain attributes, like class, id, etc., and CSS styles, like

color, stroke, opacity, etc.

To set these values D3 offers the .attr(name, value) and the .style(name, value):

Fr example we can give all our divs the same class and change their text color:

d3.selectAll("div").attr("class","myDivClass");

d3.selectAll(".myDivClass").style("color","orange");

More about .attr():

https://github.com/mbostock/d3/wiki/Selections#attr

More about .style():

https://github.com/mbostock/d3/wiki/Selections#style

A list of styles:

http://www.w3schools.com/cssref/default.asp

Excursus: Debugging

Something very helpful when working with HTML and JavaScript are the inspection and debugging

capabilities of your browser. Those differ from browser to browser, but the most popular ones all have

the same basic tools to aid you.

For example in Firefox:

The Inspector (Extras -> Web-Developer -> Inspector) lets you look at the current elements on your page.

https://github.com/mbostock/d3/wiki/Selections#attr
https://github.com/mbostock/d3/wiki/Selections#style
http://www.w3schools.com/cssref/default.asp

 VIS 17W TUTORIAL: D3 (1)

 8

This is helpful as it allows you to see if elements have been successfully created and what attributes they

have. If you cannot see an element that should be there, it might be that it has been created, but some

attributes area not defined or set to values that make the object not appear on the screen.

The Console (Extras -> Web-Developer -> Inspector) displays you error messages and warnings that

might occur in your JavaScript part.

If you prefer a different browser, it should be easy to find the pendants to these tools by googling.

Exercise 1.1

In your HTML file:

• Include D3

• Using HTML: Create an SVG

• Using d3: Add a blue circle of radius 60 to your SVG and make sure it’s completely visible

• Using d3: Add a paragraph containing green text to your document – all in one line.

data()

For data visualization it is, of course, necessary to be able to access data. For now we will work with

static data we hard-code in our HTML file. Inside the script tag, define a JavaScript array:

var data = [1, 5, 15, 20, 25];

We can bind this data to HTML elements using the .data(data) method after the selection.

d3.select("body").selectAll("p").data(data).text("Sample text");

So now if we have the same number of items in our array as we have paragraphs, each of the paragraphs

get its text set.

enter()

Usually we don’t want to create our elements beforehand so that they match the number of data-items

in our array. That’s why d3 provides the .enter() method that tells the browser what to do if there are

not enough HTML-elements for the number of data items. (.enter() will be explained more thoroughly in

the next tutorial)

 VIS 17W TUTORIAL: D3 (1)

 9

Consequently, we can use the following code to create paragraphs on the fly if we do not already have

enough in our document.

d3.select("body").selectAll("p").data(data).enter().append("p")

 .text("Sample text");

This is an important concept in D3, as it lets us select elements which do not yet exist.

Anonymous functions

But we also want our changes to be dependent on the different data-items. For this we can use

functions, a concept you should be familiar with from other languages. In D3 we often use anonymous

functions that only differ from normal functions by not having a name, and which thus cannot be reused.

d3.select("body").selectAll("div").data(data).enter().append("div")

 .text(

 function(d){

 return d;

 });

The parameter d is provided as first argument to anonymous functions by D3 and holds the data

elements. Optionally, you can also pass the index of the data-item as second parameter to your

functions.

Storing Elements

Of course you can also store the elements you have created in variables so you can access them even

easier than with selections. For your assignments, you will probably want to save the SVG in a variable.

var mySvg = d3.select("body").append("svg");

Exercise 1.2

• Create an array of at least 4 numbers

• Create an SVG element and store it in a variable

• For each data-item in your array create an SVG-shape with its position being a function of the

index of the respective data-item and its size depending on the value of the data-item.

Check your results in the browser and make sure that all circles are at least partially visible.

 VIS 17W TUTORIAL: D3 (1)

 10

csv() (loading data)

D3 also allows us to load real data in various formats; in this tutorial we will use a .csv file.

D3 provides the .csv("datafile.csv", function(data){ }) method. It takes two parameters, a string with the

path to the file, and an aonymous callback function.

d3.csv("fruit.csv", function(data) {

 console.log(data);

});

D3 loads data asynchronously, so that interaction with the browser is not hampered while loading

(scripts not related to the data can still run in the meantime). To signal that the loading is complete, D3

calls the callback function.

This is an important concept, as it means for developers that code which depends on the data should

only exist in the callback function.

Conversion

D3 loads all our data as strings, so we have to convert it to numbers to work with it. This can be done

with the "+" operator.

data.price = +data.price;

But as this has to be done for every item in the data set, you have to iterate over all items, either by

using a loop or with the following statement:

data.forEach(function(d){ d.price = +d.price });

Exercise 1.3

• Download the data http://vda.univie.ac.at/Teaching/Vis/17w/data/fruit.csv

• Load the data

• Convert the price to numbers

• Create a simple barchart with the bar length corresponding to the price, each bar labelled by the

fruit name and the bar color encoding the pit-type.

In order to solve this problem, you will need the following two code-snippets:

http://vda.univie.ac.at/Teaching/Vis/17w/data/fruit.csv

 VIS 17W TUTORIAL: D3 (1)

 11

//Get max price

var dataMax = d3.max(data,

 function(d){

 return d.price; //We only evaluate the height.

 });

// Create scale to map price to bar length.

var barScale = d3.scaleLinear()

 .domain([0, dataMax])

 .range([0, barsHeight]);

They both contain concepts which we haven't talked about yet. They will be explained in further detail in

the next tutorial. For now, please just take them for granted.

Acknowledgements

Many thanks to Michael Opperman for all the help and material he provided.

