
Summary of algorithmic performances
Daniel Tircob * Bernhard Frick †

Faculty of Computer Science
University of Vienna

Index Terms: Human-centered computing—Visualization—
Visualization techniques; Human-centered computing—Visualiza-
tion—Visualization design and evaluation methods

1 INTRODUCTION

The lecture on Algorithms and Data Structures (ADS) includes an as-
signment in which each student has to implement a data structure for
sorting a large amount of input data. There are multiple different data
structures like hash tables or trees for the students to choose from for
their implementation. Part of the assignment is to do a performance
optimization. This task is successful if the student’s implementation
performs better than the supplied reference implementation. As an
aide to reach this goal, the lecture provides a performance analysis
tool that runs a number of tests, measures execution time and mem-
ory consumption and renders a time and memory consumption graph
for each implemented function. Also contained in the graphs are the
performance of the reference implementation and the performance
of the other implementations.

Figure 1: The current visualization on CEWebS

1.1 The Problem
The graphs are static server side generated images of graphs that
are scaled according to the range of the input data. This results in
seemingly giant differences when the data are in a small range, and
significant differences disappear when the data are widely spread
out.

An other issue with these graphs is that often different implemen-
tations are very similar to each other, which leads to a very cluttered
mess of lines of the same color, making it extremely hard to identify
which data points belong to which implementation.

The static images allow no interaction with the data, making it
impossible to focus for example on one specific implementation
graph or to change the scaling of a graph.

*e-mail: a01405569@unet.univie.ac.at
†e-mail: a01505541@unet.univie.ac.at

(a) Small differences seem large (b) Big differences seem insignificant

Figure 2: Scaling in the current visualization

Lecturers also use the same anonymized graphs as the students as
a basis for the grading of the implementations. This means that find-
ing outliers is only possible by clicking through all implementations
until the matching implementation is found.

The generation of the images takes up to minutes, and every
change from one of the students invalidates all graphs from all other
students, which leads to them being regenerated on the next page
refresh, which in turn again takes up to minutes.

There is a large set of graphs that are being produced and one
really needs to focus on details to gain insight.

1.2 The Tasks
The main Objective is for students to identify bottlenecks in the
performance of their implementation of the data structure in com-
parison to reference implementations and their fellow students using
the performance evaluation system provided by the lecture.

The performance test is conducted by uploading the implemen-
tation to the CEWebS-platform, which executes a set of certain
predefined operations like inserting or deleting different amounts of
values in the data structure. Performance indicators are the measure-
ments of the following criteria:

• Execution time (lower = better)

• Peak memory consumption (lower = better)

Based on the gained knowledge students are compelled to improve
upon their implementations in order to qualify for bonus points
counting towards the final grade.

1.3 The Users
We have identified the students doing the ADS lecture as the primary
affected user group, as they rely on a useful visualization in order to
qualify for a better grade.

The lecturers are using the same graphs to grade the implemen-
tations done by the students, with no enhancement in terms of non-
anonymized data or similar features.

We determined the tutors to be the third affected user group, as
they help the students find bugs in their code based on the unit test
results.

1.4 The Data

The data given to us consists of one XML-File per user, identified
by the student number. The root XML-Element is a test-tag with
attributes to identify the student and theme. Inside that test, there
are a number of test case-tags.

Figure 3: The XML-input-files

Each test case-tag describing the execution of one unit test method
holds an attribute for the test type like an add-test, a search-test or a
remove-test, and another attribute for one of the 19 different input
sizes ranging from 1 to 1.000.000 data elements.

Inside the test case-tag contained, tags represent each measure-
ment like the test input size, run time of the test or the peak memory
consumption.

2 RELATED WORK

As we already mentioned in the introduction part, the purpose of this
project is to improve an already built system. Therefore, our main
reference software is the one integrated in the CeWebs platform. See
Figure 1.

After researching for little while, we also found the implemen-
tations of students from earlier years, that were debating the same
topic.

Reading the papers of Elif Bilgin and Franz Brandl [Bil14] were
somehow disappointing. Not only that they did not brought new
ideas to the project, but the implementation was poorly made and
the report were incomplete or not detailed enough, so you can under-
stand exactly their point of view. It may be possible that the work
of Cemil Seker and Haris Becic be a somehow better, but the only
trace we could get was their website [Sek13], that does not look very
promising.

Based on [Bil14] the only visualizations available are a line chart
and a bar chart. The line chart shows the reference, the student and
the average of one of the function that ”may” have been chosen.
The bar chart should represent, conform the figures description, an
overview of all the functions, where one of them is not behaving as
it should. This charts are unfortunately not backed up by a concrete
explanation, about how they really work. Same conclusion we can
deduce also from Cemil Seker and Haris Becics website [Sek13].

A paper that made a little bit more sense was the one of Alexander
Fomin and Hermann Hinterhauser [Fom17] written in 2016. They
structured and completed their paper, used lots of screenshots as
proof of the implementation and to guide the reader through their
work.

If we would compare the types of implemented functions, with
the other 2 papers, they also implemented line charts for the memory
tests and placed all 3 graphs on the same page, similar to a dash-
board, which makes the user get a better overview about how his
implementation is doing.

One of the main reasons of their lack of results, may be because
of the tools they used. All 3 projects were realized in java, with
help of d3-library, [Fom17] also using Tableau for the Low-fidelity
prototypes.

3 OUR APPROACH

Using the nested model for visualization design by Tamara Munzner,
we started off analyzing the situation by creating personas and de-
scribing the goals of the users based on our own experiences when
we took the lecture - this part is also clearly defined by the lecture
and can be found in the ”Introduction” chapter.

3.1 Review of the current system
For the next step we met with the lecturers of the ADS lecture, Ass.-
Prof. Mag. Dr. Martin Polaschek and Dipl.-Ing. Helmut Wanek, to
discuss the existing data, the current design and expectations on a
newly designed visualization.

What first catches the viewers attention about the old system
is that graphs are often nearly indistinguishable from each other
because they all use the same color. Having the ability to select dif-
ferent colors for single graphs and being able to select and highlight
a graph would be a big help in that case.

What we determined unanimously was that scaling needs to be re-
worked in a way that somehow preserves relative distances between
measures and not only shows the part of the scale where values
reside in. we also talked about the possibility to change scaling
between linear and and logarithmic.

Also a much requested feature by the lecturers is some kind of
grading view that allows the display of names and student IDs in
order to better identify which implementation belongs to which
student, compare specific implementations and generally get more
insight than the student have. Currently, lecturers are working with
the same views that the student also see.

The last thing we talked about was the ”ratio”-measurement,
which gives insight about the efficiency of the memory usage of the
implementation. Currently there is no visualization of that measure.

We were told that an implementation in d3.js is not necessary, as
the chance that this is really going to be used in CeWebS is fairly
low and there would be nobody to maintain the needed infrastructure
and visualization.

3.2 Low fidelity Prototyping
A basic decision we made based on the data and the current visual-
ization design, is that it makes no sense to directly compare different
tests for completely independent functions. Therefore, we think that
the old approach of showing visualizations on a per-function-basis
is a good one and we are building on that.

However it does make sense to also show all input sizes for one
test in the same chart. That way, one can see whether an implemen-
tation scales linearly or if there are certain input sizes that cause
massive time or memory consumption.

We came up with a range of various charts that suits our needs
the most. From those, we chose only the ones that we found clean,
simple and highly understandable. We then combined these graphics,
so that the information that it reveals correlates with each other.

3.2.1 Bernhard Prototypes
One of the first things these prototypes address is sensible colors for
the graphs. Choosing colors that also have a meaning and are easily
distinguishable was an easy task. In order to support the reference
graph even more, the background can in many cases be filled with
a light red below or a light green above the reference, so that the
performance of ones own implementation becomes clear faster.

Another thing that can be improved upon is the fact that in the
old ADS-graphs there are indistinguishable lines for every imple-
mentation. This bloats the diagram and adds no real benefit. Instead,

it would be better to only show lines for average, best, worst imple-
mentations.

Figure 4: Prototype time memory scatter plot

Figure 4 shows a scatter plot for time- and memory-consumption
for a given test-size n. Its design is based on the fact that very often,
a reduction in time is only possible by using more memory and vice
versa. Therefore, it could be possible to draw a logarithmic line that
is some kind of benchmark. A good-performing implementation
would be positioned somewhere near both axes and a bad imple-
mentation would be far away from both axes. In order to compare
different n, a slider is introduced to select from a range of [100,106].

There is a clear disadvantage of this view: it is not possible to
see the performance of an implementation at a glance, instead, one
would have to scrub over the whole slider.

The advantage though is that similar implementations would show
up near each other. Maybe it would even be possible to see some
clustering happen, either within different implementations of a data
structure or between different data structures.

What would certainly be hard is the calculation of the border
between a good and a bad performing implementation. Maybe this
can somehow be done based on the reference implementation.

Figure 5: Prototype comparison with other implementations

In figure 5, time and memory are split up in two diagrams sharing
the same x axis. It addresses the disadvantage of the previous chart
by showing the test size on the bottom axis. The main objective of
this view is to enable the user to choose a comparison on his own.

With a list of check boxes to the left, one could select whether he
wanted to see his own implementation, the reference, a good or a bad
implementation, the average performance of all implementations,
a fictional good or bad implementation where the performance is
chosen for every n, or other implementations with the same structure
or the same sort.

Figure 6: Prototype zoom for detail

Be it a line chart or a scatter plot, when having many different
data points or implementations in the same view, it can get crowded
and confusing very quickly. In order to overcome those difficulties
and maximize insight for the viewer, figure 6 introduces two key
features: first, brushing and linking is used to narrow down both
axes so that only a specific area is displayed. In addition, a graph
should have the possibility to be highlighted via hover and click.
This enables the user to visually distinguish graphs that are very
close together or similar in other ways.

Figure 7: Prototype deviation from reference

Using the chart in figure 7, one should be able to see where stu-
dents have the most problems and the largest successes implement-
ing their data structures. It shows the most effective data structure
over all and within data structures, and one can clearly see which
implementations perform best. Again, a slider is used to scrub over
n. Alternatively, this can also be implemented using two charts that
share the same x axis (as described in the chart above).

In order to select the implementations to view, there could be a
list of all implementations with a toggle button for each in addition

to a set of presets that allow to quickly select all implementations of
one data structure.

There should be a reference implementation for each data struc-
ture. To make it stand out, one could use the same color but a
different symbol.

3.2.2 Daniel’s Prototypes
From early beginning, dashboards seemed a great idea. They allow
the users to analyze and compare different parts of their program in
the same time. An example could be; The project implementation of
a student shows stunning results for the elapsed time for the ”Insert
function” for example, that inserts an array of values into the data
structure. The memory it occupies on disk although, is extremely
high. This way he gets the idea form the very beginning what could
have gone wrong in his implementation.

Figure 8: Prototype Dashboard 1

The above dashboard consists of three individual graphs.
The first view of the dashboard is representing the amount of time

necessary for the sort function to finish. Here the ”n” - number of
objects that need to be sort - will be considered the highest. The bars
that will always be present in this graph will be the student’s bar, the
reference bar and the best/worst time bar.

The second graph will give the students an overview about the
memory performance. ”Not freed memory”, is the dynamic memory,
like the heap, that in the lifetime of one test was demanded, but not
freed. ”Allocated memory” is the amount of memory the program
is normally using. ”Maximum allocated memory” is the maximum
amount of memory that was needed during the test, the highest value
of bytes needed to be stored during one trial.

The last graph is a feature that I think will be suitable for this
assignment. It was not implemented or thought by anybody that we

researched until now. We calculate the time, we calculate the mem-
ory but the amount of work that the CPU puts in is also important.
This will be a good optimization counter. It will work basically as a
heat map ranging from 0% to 100%.

An important technique that we would like to apply to all the
graph will be tooltiping. In this way, by hovering over the time
barchart, the user can see at exact millisecond, how fast his pro-
gram/function was.

// image: Compare 1 apply function (sort function) // image:
Compare 2add function (add into data structure)

Our second variation of the dashboard is somehow more colorful
(The graphs will be updated in short time, possibly using a software
tool like Tableau. The sketches are temporary.)

Figure 9: Prototype Dashboard 2

In comparison with the previous dashboard, we settled for a line
chart for showing how much time a function needs. In addition,
the filter for ”n” will clarify how much of our data size we want
to display. This way the user will be able to see how the program
reacts at each step of data amount incrementation. Trying not to
overload the visualization of the chart, filtering for some specific
user fits perfect here. In case the person wants to see all of the other
results, he can simply check the ”all” box.

Colors also play an important role here. They will be set for each
student, so in case of partial overlap, something will be still visible.
Tooltipping will be an alternative in case the colors have very similar
tones, like almost the same shade of green. This can easily happen,
in case of huge amount of users.

Instead of only the efficiency of the processor, as in dashboard
1, we now present 3 types of efficiency, namely time, memory and
CPU. These will all be represented through different heat-maps.
Each efficiency type will have its own reference and all will range

between 0% and 100%. This will provide a nice overview of the
entire program, because it aggregates all the important parts into
one.

The last graph will manage the memory. It will have the same
filter settings as set above. Having the ”n” specified is an advantage,
because you can easily see how your program reacted at either small
amount of data or a huge amount.

Because the legends of the graphs can get quite long, a scrolling
window will be a wise option. This will increase space for all 3
graphs and will not clutter the software.

3.3 Implementation in Tableau

Based on the dimensions of the given data and the old ADS-graphs,
is becomes clear that distinguishable colors are badly needed. While
our color choices diverged a bit from what we had in mind with
the prototype, we are still using colors to identify different imple-
mentations. Instead of many bluish and yellow near-invisible lines,
we went for the color scheme that was presented in the VIS-lecture.
It was a tedious task to set specific colors for all implementations,
as colors had to be set for each data point of each test size of each
functionality.

Figure 10: The student overview Dashboard

The student overview dashboard, as seen in figure 10, features
graphs for execution time, memory consumption and even memory
efficiency, that allow the comparison of ones own implementation
with specifically selected implementations of your colleagues or a
default selection of other implementations including the reference
implementation.

Some things like strange positioning of labels might jump out
in this view, which resulted from limitations in Tableau’s layouting
possibilities, leading to big areas of unused space between charts
when positioned correctly.

Figure 11: Memory usage analysis

Figure 11 shows the second page of the student dashboard, al-
lowing in depth memory analysis. To the right, there are selects to
choose which functionality to compare, and a list of other implemen-
tations of the same data structure.

The third view, as shown in figure 12, then combines the execu-
tion time and memory consumption chart into one scatter plot.

Figure 12: Time and Memory scatter plot

After digging through the performance data and getting a grasp
of how the individual functions might perform in a general sense,
we found out that some of the prototype graphs might not work
the way we figured. One such example is the time memory scatter
plot of the student view (shown in figure 12), where the basic idea
was to see kind of a trade-off between these two measurements.
This turned out to not really be the case, as most implementations
kind of performed in the same neighborhood of time and memory
consumption. There were some exceptions of course, but those did
not exhibit an inverted time-memory consumption but were clearly
far away from everything else.

The second part of our design is a lecturer view, which offers even
deeper insight and detail. For example, lecturers are enabled to see
which implementation belongs to which student by the indication of
a name and the student id.

Figure 13: Time and Memory scatter plot

The lecturer view (shown in figure 13 starts off with a time mem-
ory scatter plot, which we thought results in the best overview over
all implementations. There are controls to switch between different
themes and functions. We deliberately decided to implement these
switches as radio buttons, and hereby disallowing the comparison of
different functions of the implementation. Comparing two different
parts of code performance wise makes no sense. For example, insert-
ing 1 million values into the structure takes a big amount of memory
and time, and the code needed to do this is in most implementations
over hundred lines long. Looking up one value in the data structure

on the other hand is a task of 3 lines and is executed extremely
quickly.

The second page of the lecturer dashboard (figure 14) is made
specifically for analysis of performance trade offs, as such behavior
can hardly be spotted in a scatter plot. Note that here, the upper
execution time graph uses linear scaling and the lower memory
consumption graph uses logarithmic scaling. We found out that this
seems to fit the available data best.

Figure 14: Time and Memory usage analysis

Finally, on the last page of the lecturer dashboard, as shown in
figure 15, we placed a completely new graph that gives insight
about how different data structures or themes perform. Per default,
all implementations of all themes in all sizes are shown. The only
constraint is the test (as mentioned before). Colors are used to
differentiate between themes this time. Still, it is possible to select
one student via the tool tip that appears when clicking on one data
point. It also becomes visible which theme was implemented most
often and that within some themes, deviations are larger or smaller.
We see that the best and worst performing implementations overall
are of the same theme. This makes for a nice overview over all data
structures, and might even be valuable when teaching the students
about the data structures and their performances.

Figure 15: Theme cluster analysis

on the bottom we included a slider that allows the selection of
different test sizes. This slider only allows the selection of one size
or all sizes. Using check boxes for sizes would enable a comparison
of the performance using 10.000 elements vs. the performance
of using 1.000.000 elements, but we left this option out because
Tableau would not allow the combination of the check boxes and
the legend for the size of the dots, resulting in the display of two
”size”-lists, one for check boxes, and one for the legend.

Some of the aforementioned graphs are placed on different dash-
boards, because putting them on the same dashboard would require

them being half-sized or even smaller, making them useless again
because the many data points would be too tightly packed and nearly
invisible.

This leads to these graphs not being linked. We did research about
linking between different story pages and our findings can be read
in ”Challenges” below.

4 IMPLEMENTATION DETAILS

The performance data we received consists of one XML-file per
student, containing an array of tests that are run, each with different
input data sizes, which in turn contain the measurements for time
and memory (see chapter ”Introduction/The Data” above).

4.1 Data preparation
We used the standard Scala XML Library and its query functionality
in a custom Scala script to extract data from the XML-files in order
to convert them to a CSV-file, which is the most convenient format
to import into Tableau.

Figure 16: The converted CSV-files

4.2 Visualization
After deciding that this project is not meant to replace the current
visualization found on the CEWebS-platform, we opted for Tableau
as our visualization tool, instead of implementing a web-based vi-
sualization tool with d3.js. Tableau is a WYSIWYG-Editor for
visualizations that offers an easy to use interface that allows to
quickly create beautiful and interactive visualizations via drag-and-
drop interactions and also offers deeper control via mathematical
operations that can be applied to the data and a basic set of user in-
terface elements for somewhat custom controls. This also remedies
the fact that with a web based implementation we would also have
to design the complete user interface.

4.3 Challenges
The hardest problem we encountered is creating custom controls
in Tableau. Sliders, radio buttons etc. are not fully customizable
to the extent we wish they were, and there is no option to combine
them with a legend for example. One instance of such is the legend
for the dot-size that indicates the test size. Showing a legend while
also allowing filter-like functionality on the test size, would force
us to display the list of all sizes two times, each with a different
purpose. In this case we decided to stick with a slider, not allowing
the selection of different sizes.

It is also not possible to apply a filter to multiple pages of a
Tableau story. Upon further research, we found that this is an open
feature request at Tableau, but Tableau decided that pages are not
meant to be used in such a way. This might indicate that we used
Tableau the wrong way and our design indeed needs some rework.

Furthermore, we did not yet find out how to do something like
colors based on RegEx-matching or similar. This would enable us to

automatically highlight the reference implementation graphs as their
IDs begin with ”ref” instead of ”a”. We tried different approaches
using grouped data and other things, but none lead to the wanted
result. Custom coloring seems to be an extremely tedious task.

Most of our problems we are sure could be mitigated by re-
implementing the design using d3.js, as it offers nearly endless
customization possibilities, but this task is out of scope and left to
the reader or a follow-up project on the matter.

5 RESULTS

5.1 Scenario: Student
Yvonne is a CS-Student in the second semester, attending the al-
gorithms and data structures course. She wants to receive all the
possible bonus points for the best-performing implementation of the
data structure.

As our visualization design is not meant to replace the current de-
sign, we are not going to go discuss the submission and performance
testing process.

Yvonne is presented with the dashboard showed in Figure 10.
This contains measures of the execution time and memory consump-
tion. The overview also provides selects to change between tests
and different input sizes.

She represents the student with ID number a240226140 therefore,
the orange line in the chart, that she could either manually search
for it or just type in the search box. Beside herself, she also selected
other peers, by going to the bottom of the view and clicking the
”Identifire” tab.

Figure 17: Filters of the student dashboard

Because all the persons that she selected had somehow same
results as she had, the chart is now cluttered and the lines are not
clearly distinguishable. So she decides to reduce the data size, seeing
only the results for data between 200 and 500000. She simply drags
the slider form both sides, until the desired value is met, or she
can insert the minimum value to the left input size of the slider and
maximum value to the right of it.

Figure 18: Input values in slider

This did not help too much. It is still not clear if she is better than
the purple line (for example). So she wants to see a more detailed
result. In this case, by tooltiping on the lines, a box with precise
informations about is popping up. Now it is much clear for her, at
what size she got that time result.

Now she would like also to see how the memory usage in relation
with the size is. By clicking her own ID in the Identifire legend on
the right side, everything about that specific user will be highlighted,
leaving the others in the background. This way she can concen-
trate more on her results and also keep an eye on the others or the
reference graph.

Figure 19: Tooltip

Figure 20: Highlighting

Advanced charts then provide deeper insight: the time/memory-
chart displays each test as a point on a scatterplot. Tests of the same
implementation share the same color, the input size is denoted by the
size of the dot. Selecting a dot highlights all data points that belong
to the same implementation. Using the legend to the right, multiple
implementations can be highlighted to faciliate a direct comparison.

In this view, it becomes clear quite quickly, that the own (yellow)
implementation is performing worse than all others in the lower
input sizes. By clicking the dot, they all get highlighted. Hovering
the dot then reveals the input size that results in such overblown time
consumption.

5.2 Scenario: Lecturer

The main goal for a lecturer in order to grade the implementations
is to easily spot deviations from the reference implementation, be it
significantly better or worse.

Different themes are individually graded this time he reviews the
implementations of theme 101, which is the B+Tree data structure.
In the first step, the lecturer view is opened with the Time over
Memory scatter plot as the default screen.

Using the view in figure 21, he gets an overview of all implemen-
tations of the B+Tree data structure, separated by the functionality
tested (like inserting or deleting data in the structure). Colors in-
dicate different implementations and the size of the dot indicates
the test size, which is in the range of 100,106. For each theme,
the reference implementation is included (we could not manage to

Figure 21: The default screen of the lecturer view

display it in a way that stands out from the others using tableau).
Here, one can already see outliers for the first time: there are some
yellow dots high up on the left side.

To further inspect this anomaly, the lecturer then clicks the yellow
dot, which brings up a tool tip showing information like the test size
and the implementing student.

Figure 22: Selecting all data points of one implementation

Upon clicking the identifier in figure 22, all test sizes belonging
to the implementation are highlighted.

Now it is clearly visible, that the implementation has some seri-
ous issues with input sizes below 10.000 elements. Above that, it
performs just like all other implementations.

For direct comparison to the reference implementation, we now
also select the reference in the legend to the right, which is shown in
figure 23.

Figure 23: Direct comparison to the reference implementation

We see now that the graph of the reference implementation kind
of looks the same, but with significantly lower execution time ap-
parently, they used a similar approach, thus the resembling graphs,
but the student implementation of the insert function is off by one
magnitude in the lower test sizes.

Figure 24: Clearly visible trade off in separated view

Consulting the second visualization in figure 24 showing two
separate diagrams, we can identify that there seems to be a trade
off in memory usage the implementation performs badly in the
lower ranges, while becoming on par with or in some parts even
outperforming the reference. Execution time however does not see
any improvement in the higher ranges.

Now it is up to the lecturer which grade to give generally, these
data structures are meant to handle humongous amounts of data,
which means that the seemingly catastrophic performance in the
lower ranges might be an acceptable trade off, especially when
considering the logarithmic scales used ins these visualizations.

5.3 Performance

Overall, we are quite happy with the capability of our design, es-
pecially proven through the fact that we could easily find many
anomalies while playing around and not even specifically searching
for performance issues. We both implemented such a data structure
on our own and our implementations were included in the data set
too. Despite the fact that the data we got was anonymized, it was
still really interesting to dig through.

The design is still rough on the edges, but we think that we
achieved our goal and the tool works fairly well for a high fidelity
prototype.

5.4 Feedback

We showed our prototype to about 5 fellow students that all have
already passed the ADS lecture. Our designated task for them was
to see if there is an issue with a given implementation (we provided
the student id), and if yes, what the reason might be.

In our analysis, 4 out of 5 people liked the idea of overview.
They found it interesting that the size is bounded together with
how the memory was affected at that point in time. Mainly they
liked interacting with the dashboard, seeing what happens if they
choose more people, if they click the specific person and they found
tooltiping very useful because they could see everything.

The other person thought that 3 graphs is too crowded (taking in
consideration that the experiment was done on a 13” Macbook)

Something that was harder to cope with all of them was under-
standing the functions themselve. This has but not everything to
do with the design, but with the task itself. It took us also a lot of
time understanding the difference between all the memory types and
which was which in the data set.

6 DISCUSSION

What our design does especially good is showing the user at a glance
where anomalies reside. This is made even easier by offering details
via interaction and the ability to directly compare two specific imple-
mentations without displaying all other graphs. We addressed most
of the concerns raised by Ass.-Prof. Mag. Dr. Martin Polaschek and
Dipl.-Ing. Helmut Wanek like distinguishable colors, better scaling
and a grading view and many issues with the implementations in
our data jumped out even when we were just toying around and not
really specifically searching for problems.

All in all we think that our design really did improve upon the
current design and is most likely the best implementation compared
to previous projects done on the same topic (see chapter ”Related
Work”).

Still, there is room for improvement: some diagrams could be
combined and linked in one big dashboard, enabling even more
interaction between them. With some of the graphs though, this
is not an easy task, as they would soon become unreadable again
because they are so small. This is definitely an area with potential.

Tableau also makes it hard to implement custom controls, like
combining check boxes and legends or sliders, which are nearly
impossible to style apart from default functionality like displaying
the 0 value or not.

Cross platform usability is bad with Tableau, and this is especially
important as the home of c++, the language the students use for
their implementation, is on Unix and there is no Unix version of
Tableau. A web application would be able to address that. And
finally, implementing our design in JavaScript using d3.js would
allow a much more fine grained customization of controls, legends
and other UI components and even makes integration with CEWebS
possible.

What we learned during this project, is that in order to do a
visualization task right, there is a tremendous amount of work to do
and there is no real possibility to somehow make it less work, like
with every task where users are involved. We know that we could
have done better if we invested more of our time. Also it is a pity
that our design was not meant to replace the current graphs, but we
understand that this is out of the scope of the visualization lecture.

7 WORK LOG

Both of us did half of the user testing with the prototypes, showing
it to our friends.

We both did some minor corrections on the Tableau prototype,
concerning layouting and things that were rushed in Milestone 3.

Writing the paper was split on a per chapter basis, resulting in the
following work share:

• Introduction: Bernhard

– The Problem

– The Tasks

– The Users

– The Data

• Related Work: Daniel

• Our Approach

– Review of the current System: Bernhard

– Low Fidelity Prototyping: Daniel Bernhard

– Implementation in Tableau: Bernhard

• Implementation Details: Bernhard

– Data Preparation

– Visualization

– Challenges

• Results

– Scenario Student: Daniel

– Scenario Lecturer: Bernhard

– Performance: Bernhard

– Feedback: Daniel

• Discussion: Bernhard

ACKNOWLEDGMENTS

The authors wish to thank Ass.-Prof. Mag. Dr. Martin Polaschek
and Dipl.-Ing. Helmut Wanek, the lecturers of the Algorithms and
data structures Course, for supporting us with both performance data
and feedback on our designs.

REFERENCES

[Sek13] Becic Haris Seker Cemil. Algorithm-based Performance
Visualization. June 2013. URL: http://cemil-seker.
wixsite.com/vischproposal.

[Bil14] Brandl Franz Bilgin Elif. Visualisierung fffdfffdfffd
Project fffdfffdfffd Report. June 2014. URL: vda .
univie . ac . at / Teaching / Vis / 14s / project _
finalReports/team11.pdf.

[Fom17] Hinterhauser Hermann Fomin Alexander. Summary of Al-
gorithmic Performances. Jan. 2017. URL: vda.univie.
ac.at/Teaching/Vis/16w/Final_Report/02.
pdf.

http://cemil-seker.wixsite.com/vischproposal
http://cemil-seker.wixsite.com/vischproposal
vda.univie.ac.at/Teaching/Vis/14s/project_finalReports/team11.pdf
vda.univie.ac.at/Teaching/Vis/14s/project_finalReports/team11.pdf
vda.univie.ac.at/Teaching/Vis/14s/project_finalReports/team11.pdf
vda.univie.ac.at/Teaching/Vis/16w/Final_Report/02.pdf
vda.univie.ac.at/Teaching/Vis/16w/Final_Report/02.pdf
vda.univie.ac.at/Teaching/Vis/16w/Final_Report/02.pdf

	Introduction
	The Problem
	The Tasks
	The Users
	The Data

	Related Work
	Our approach
	Review of the current system
	Low fidelity Prototyping
	Bernhard Prototypes
	Daniel's Prototypes

	Implementation in Tableau

	Implementation details
	Data preparation
	Visualization
	Challenges

	Results
	Scenario: Student
	Scenario: Lecturer
	Performance
	Feedback

	Discussion
	Work log

