Clustering Visualiser - Visualising partitioning-based clustering
algorithms

Richard Paul*

University of Vienna

ABSTRACT

This paper gives an overview of the implementation of the Clus-
tering Visualizer, a novel clustering algorithm analysing tool. The
main focus is a tool for beginner and experts in clustering tech-
niques. The aim is to explore different types of partitioning algo-
rithms, namely K-MEANS and K-MEDIANS with different types of
initialisation and update strategies. The user will get deeper knowl-
edge of the functionality and the procedure of the algorithm with the
possibility to analyse each selected setting at the point of interest.

Index Terms:
techniques—Similarities;

Partitioning—Visualization—Clustering

1 INTRODUCTION

These days clustering algorithms capture a very important tool for
mining data and similarities between high dimensional features. To
find those complex structures in the data, a lot of different clustering
approaches are available for different problem types.

A main group of techniques is covered by partitioning methods like
K-MEANS and its derivates which are the clustering techniques
of interest in this paper and in our project implementation.
Partitioning methods are the more easy methods in the space
of clustering techniques. A common problem of people which
are at the beginning of learning how clustering algorithms work
is that it is very hard to understand how such an algorithm
works until a solution is found and the algorithm is converged.
But not just beginners are the target group for such an analy-
sis tool. Also much more expert users often wants to explore
different settings or strategies and see their behaviour to the solution.

Our goal is to provide such an clustering algorithm analysis tool
which brings deeper understanding to fresh users in this area, but
also can be used as an analysis tool to explore different parameter
space settings or differences between similar algorithms.

2 RELATED WORK

Beside the websites there are academic papers which targets some
visualization techniques. Like in [4], which introduces a framework
for different data flow models independent of their domain and
additional a set of strategies for parameter space analysis. Further
they characterize different the different analysis tasks possible.

Another very interesting literature for this topic is given in [2].
Here interactive multiple views visualizations are considered
and maintained in form of visualization pipelines which are then

*e-mail: a1302451 @univie.ac.at
fe-mail: 201308699 @unet.univie.ac.at
e-mail: 21449702 @unet.univie.ac.at

Severin Staudinger?
University of Vienna

Michael Trimmel*
University of Vienna

optimized.

There are a lot of interesting websites which try to describe
how a clustering algorithm is working. For example at this site'
the user can see an animation of a partitioning algorithm. The
negative aspect here is that the user has no influence to the procedure.

Another very sophisticated tool is presented here?. Here the user
has much more influence to the parameter space of the techniques
implemented and also its data sets. Some methods are similar to our
basic implementation because they are very useful for analysing the
behaviour of the algorithm, like iterating through the independent
steps or choose the cluster centers at the start up.

3 APPROACH

The aim of the Clustering Visualizer is to bring the possibility to
the user to get deeper knowledge of different clustering algorithms,
their parameter space and the resulting behaviour of different
parameter settings to the user. This is given by well implemented
and well-wrought ideas and a highly sophisticated combination of
different visualisation techniques.

The user has the ability to interactive manipulate different clustering
techniques, namely K-MEANS and K-MEDIANS. This can be
done by a number of different interactions like a set of different
initialisation strategies which are implemented. Next to the default
strategy of random cluster centers, the D2-strategy of [1], the
farthest heuristic of [3] is implemented and additionally, the user
has the possibility to choose the cluster centers himself to explore
the effects of different initialisation centers.

Further two different update strategies are possible to choose. The
default update strategy of Lloyd and the MacQueen update strategy
which differs a little bit. Further algorithm specific parameters are
the number of clusters.

A huge aspect of our visualisation approach are the small
multiples of each iteration until convergence, the novel filters
and the head to head comparison. The small multiples show an
overview over each iteration until convergence. Here the user has
the first overview over the whole procedure and can find the it-
erations where the algorithm run through the biggest variation easily.

The unique cluster center path filter and shows the user how the
algorithm is converging and the way of the cluster centers with the
update strategies of interest. For a better focus at the cluster center
path the user can disable the data points and the center points to just
show the path if necessary.

The head to head comparison allows comparison between different
iterations, different update strategies and initialisation strategies or
different settings in parameter space easily. This is a huge pro of this

Uhttps://www.toptal.com/machine-learning/clustering-algorithms
Zhttps://www.naftaliharris.com/blog/visualizing-k-means-clustering/


h
h

visualisation and allows deep insights in the clustering procedures
over the time period. Last but not least the user has the ability to
choose if the iterations should be animated with different velocities
or he can switch for himself through the different iterations.

4 IMPLEMENTATION

Technically the basic framework of the clustering tool is imple-
mented in Java® and the visualisation is done in JavaFX*. Our first
approach to use the Processing’ framework was discarded when we
focused some issues at the beginning of the high fidelity prototype.
There have been huge issues by integrating the visualisation
of Processing into the JavaFX-GUI. Therefore we decided to
implement also the visualisation in JavaFX. This decision led to
much more code and work, but also to a more structured and clean
project.

For building our project we used Apache Maven, which is great for
modular programming used in large projects. We also included the
logging framework log4j2, which offers the user great opportunities
like adjusting logging levels, outputs and more even when the app is
running. This is great for bug fixing and reconstructing unexpected
behaviour.

5 RESULTS

The resulting clustering visualisation tool is a really nice application
which is in the position to allow deep insights into the procedure
of the algorithms implemented. As opposed to implement multiple
clustering algorithms, the final version is focused on K-MEANS and
some derivations of it. The decision was done after the feedback
of the M3 milestone. At the startup of the application, the user
gets the first overview over the whole procedure of the algorithm
until convergence like shown in figure 1. This is the implementation
of Shneiderman’s Mantra: Overview first, zoom and filter, then
details-on-demand.

i 7
e /n ~ e
4 i X
3 A A
f » f7 e [
X X &
P

(Re-Icompute

Figure 1: Overview over the whole procedure until convergence -
Small multiples to figure out easily the steps of interest

A huge ergonomic aspect is that the iteration of interest can be
selected on the left side by a mouse click event. Then the view on
the right side is updated immediately to the chosen iteration step.
This is a part of the zoom and filter process of the mantra mentioned
above and a huge help to find iterations where critical steps are per-
formed. For further details (on-demand), tooltips are implemented

3https://www.java.com/de/
“https://docs.oracle.com/javafx/2/overview/jfxpub-overview.htm
Shttps://processing.org

when the mouse is hovered over points or cluster centers. They
provide additional information for the user and are shown in figure 2.

x: 138, v: 421
Cluster ID: 2
Cluster size: 227

Figure 2: Tooltips which show additional information on demand when
hovering over points or cluster centers (Shneidermans Mantra)

Another very interesting and informative view is the head to head
comparison shown in figure 3. This view has so much power
to show different behaviour of different clustering algorithms,
initialisation or update strategies or different settings in parameter
space to the user. One specific scenario of use would be for example
to compare different initialisation techniques and its influence to the
convergence. An additional feature here is that the iterations can be
synchronised or run independently step by step next to each other.

Figure 3: Overview over the head to head comparison of different ini-
tialisation steps, update strategies or cluster parameter space settings

Next to the comparison of different initialisation techniques another
scenario of use would be the comparison of different algorithms.
When the user would like to know which algorithm is performing
better at the first iterations because maybe he does not want to iter-
ate until convergence he can inspect the behaviour next to each other.

For more fresh users which do not have much pre-knowledge in
clustering techniques another use case could be the pseudocode tab
from figure 4. This allows the user to get information which line
of the code is executed currently. This can be very informative and
a huge help to understand the procedure of the algorithm. (Note:
Because of time aspects this feature is not fully implemented yet)


h
h
h

Ainitialisation

while convergence == false
for p : points
for c : centroids
if d(p,c) minimal
set_c.add(p)
endif
endfor
endfor

for ¢ : centroids.
c.position = mean (set_c)
endfor

if set_c == set_cO forall ¢
convergence = true
endif
endwhile

Figure 4: Overview over the pseudocode tab; In the final version each
iteration step should be highlighted in the respective pseudocode line
(not implemented yet)

More expert users will have more interest in different parameter
space settings. These can be chosen as shown in figure 5. The
common parameters like the number of clusters, the update
strategy and the initialisation strategy can be selected manually and
independent of each other when using the head-to-head comparison
of the application. This feature also allows the user the option
that he can compare for example K-MEANS with K-MEDIANS
synchronised or independently depending if the synchronise-mode
mentioned above is enabled or disabled.

¥ Parameters

Kk 3 =
Strategy: Lloyd ~
Initialize: Random.~
Algorithm: K-meansv

Figure 5: Parameter space setting tab. Here, beside the algorithm, the
user can select different number of clusters, initialisation strategies
and update strategies.

Most of the users may have interest in just discover the procedure

of clustering algorithms and get a better understanding of them.

Some others may want to use our application to analyse their own
data/problem. For this specific type of users the application provides
the possibility to load data from a file. With this feature the user can
analyse and inspect his two dimensional data set easily with our
tool. Figure 6 shows the tab where the user can choose between
randomly generated data or loading his own data from a file of from
example data sets provided.

¥ Data Generator

Load from file

Random Dataset

Figure 6: Data set panel where randomly generated data can be
loaded or data from example files provided by the user. So the user
has the ability to analyse his own data

In our tool the user has full control over how the progress of the
algorithm chosen. This means, that he can iterate through the steps
manually or can use the animation feature which is shown in figure 7.
Here the user can jump to an iteration step by selecting the number
in the text field. Further an animation feature is implemented where
the user can choose the speed of the iterations between each step.
Another interesting feature is the points slider. Here the user has
control over the percentage of updated points per iteration. Further
tools in the animation feature are the pause mode and the rerun
mode. These features can as the name suggest pause or reset the
animation.

W Visualizer Settings

Iteration: 5 :
Paints:
---------- Animation ---...
Speed:

O Il P

Figure 7: Visualizer parameter space setting panel. Here the algorithm
type can be chosen. Also the common parameters can be chosen and
additional different strategies for initialisation and update strategies
for the iterations can be chosen by the user.

The next very important control features complements the filter tab.
These are the data point filter, the cluster centers filter, the centroid
path filter and last but not least the shapes filter. These filters control
the functions which enable or disable the points which are clustered,
the centers of each cluster and the path of the centers through each
iteration. The shapes filter is a very powerful feature for people
which are colour blind. Also when there are a lot of clusters just
colour coding could be not enough to distinct the clusters easily.
This filter covers these problems and the points are additionally
coded by shape instead just by colour.



v Filter

v/| Data points

v Cluster centers

Centroid paths

v/| Shapes

Figure 8: Filter tab. Here the user has the ability to enable and disable
the data points, the centers and as a special feature the center paths
of the cluster centers. Further a colour-blind mode is implemented
which enables an additional shape encoding of the data points to the
different types of clusters.

Since none of us is colourblind, we were not able to judge how much
the shape-encoding actually helped in making the clusters easily
distinguishable. Instead of running the program with deactivated
colour-encoding, we decided to evaluate the shape-encoding by
using a webtool called Coblis®, where we uploaded screenshots of
our applications clustering result and transformed them to what they
look like for a colourblind person.

Figure 9: A small colour-encoded test sample.

The sample in figure 9 was clustered with k = 8, which is the
maximum k our application supports at the moment, in order to
evaluate shape-encoding for all different shapes, we provide. Of
course the clustering result is more or less nonsense, but useful to
demonstrate how shape-encoding can provide easier perception of
the clustering result.

A problem that rises also for people who are not colour-blind can
also be seen here: Since the cluster centers are mostly randomly set
it is possible for two similarly coloured clusters to lay directly next
to each other, which makes these clusters difficult to distinguish.

Shttp://www.color-blindness.com/coblis-color-blindness-simulator/

Figure 10: From top-left to bottom-right: red-blind, green-blind, blue-
blind and monochromatic perception of the colour-encoded sample
from figure 9.

The colourblind perceptions of figure 9 seen in figure 10 show that it
can be very difficult to distinguish the clusters using colour-encoding
only. Especially in the red-blind and green-blind version the original
8 clusters melted into 4 or 5 big clusters. The blue-blind version
is not as that bad, but still faces problems when similar colours are
close to each other. The monochromatic view is catastrophic. The
clusters melted down into 2 big clusters, ignoring the 2-point cluster
in the top-right corner.

e M
o -
=) [

Figure 11: The same sample as in figure 9, but also shape-encoded.

Comparing the shape-and-colour-encoding to the colour-encoding,
we can clearly see an improvement in visibility. The pink and
red clusters are now easily distinguishable. Though there is also
similarity between shapes as for example the diamond (grass green),
the circle (yellow) and the pentagon (pink) are very similar. Next to
each other they would not be easily distinguishable in shape only.


h

u] o
T "'x,&.
ox EX o ox EX o
*x *Ex
x )g‘ ¥ X 4 #a
4 tz%i; £3id
o r “ o r .
a 2 e a 2 k4
o o
o o
a o
X x X x
x x
L 1
x X o, x X X w,
X
irﬁsﬁ #n ’:'2‘ % #n
;xmﬁi ;xrn%ﬁ
[m] i % o 3 o
. a . =] ”g
o o
o a

Figure 12: From top-left to bottom-right: red-blind, green-blind,
blue-blind and monochromatic perception of the colour- and shape-
encoded sample from figure 11.

Anyhow we find the shapes to be useful to make clusters more
distinguishable. The red-blind and green-blind versions demonstrate
this very well. The big yellow cluster in the bottom-left corner of
the red-blind version in figure 10 has fallen apart into three not
necessarily immediately, but surely easier distinguishable clusters,
also because the shape accentuate the colour by letting it happier
lighter or darker.

The monochromatic view is also a nice example for the general
effectiveness of shapes, but also a nice example for the weakness of
similar shapes, which we can observe in the left half of the view.

In our opinion better ways to provide colour-blind-friendly visual-
izations would be to distribute the colour in a more sophisticated
way to the clusters than we do it now. Technically it would be quite
possible to assign cluster colours in a manner that similar colours
are spread as far as possible from each other, since we first finish
the overall clustering calculation before we start visualizing it. This
means that all iterations and all states of the calculation are available
at the moment visualization.

6 DISCUSSION

Our application has many advantages and strengths. The main
advantage is that the user has the opportunity of exploring and
comparing different clustering algorithms in a wide range of
different aspects. So one is able to compare different parameter
settings, load in or create data sets and have full control of the area
of interest.

Furthermore the tool is totally conform with Shneiderman’s Mantra.
So we give an overview first in the iterations tab with the small
multiples, then the user can zoom and filter in the algorithm area and
can have details on demand when hovering over cluster centroids.

The zoom is not an optical one, but it’s like zooming into the
algorithm itself. Meaning that our zoom option allows to slow down
the visualisation steps not only down to iteration-wise steps, but

point-wise steps, so that the user can reproduce the assignment of
every point to a cluster. Another strong feature of our tool is the
possibility of highlighting a whole cluster when hovering over its
corresponding cluster center. As described in the previous chapters
a major advantage of our tool is the colourblind mode, in which the
user can see form-encoded clusters instead of just colour-encoded
ones.

One of the main challenges, besides bug fixing, was the design
choice, since it was very hard to include all controls and options in
the application.Also we had to ensure that the application looks cool
even on different screen aspect ratios. Our application is meant to
run on monitors with screen aspect ratios between 1366*768 and
1920*1080.

Another hard issue was the linkage between the main algorithm
area with the comparing one. It was challenging to synchronise the
navigation of the two different windows without producing unex-
pected behaviour. After hours of testing and bug-fixing everything
worked fine, but the navigation linkage was indeed no easy thing to
implement.

7 FURTHER WORK

There are a lot of extensions for our app which can be done in the
future. We thought of giving the user the opportunity of exploring
the algorithm implementation itself in an even deeper way.
Therefore we’d like to realise a pseudo code visualisation, where one
can see in super slow motion how and why each point is assigned to
a specific cluster. Furthermore we would like to implement some
more partitioning-based algorithms like K-means++ or K-modes. A
small but clever feature would be an option for saving and storing
created data sets as well as animations.

Further things would be an implementation of more classes
of clustering algorithms like density based algorithms with
DBSCAN or OPTICS for example. Also a free web application
would be possible.

8 WHO DID WHAT

¢ Richard Paul: Visualisation techniques, app design meetings,
visualisation implementation, tooltips, app navigation, algo-
rithm parts, app design, bug fixing, colour-blindness analysis
in the report.

* Severin Staudinger: Visualisation techniques, app design meet-
ings, visualisation implementation, small multiples, algorithm
navigation, algorithm parts, app design, major bug fixing, mi-
nor parts in report (discussion, further work), parts in tooltips,
cluster highlighting, animations

¢ Michael Trimmel: Visualisation techniques, app design meet-
ings, algorithms, report.

REFERENCES

[1] O. Bachem, M. Lucic, H. Hassani, and A. Krause. Fast and provably
good seedings for k-means. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, eds., Advances in Neural Information Process-
ing Systems 29, pp. 55-63. Curran Associates, Inc., 2016.

[2] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E. Scheidegger,
C. T. Silva, and H. T. Vo. Vistrails: enabling interactive multiple-view
visualizations. In VIS 05. IEEE Visualization, 2005., pp. 135-142, Oct
2005. doi: 10.1109/VISUAL.2005.1532788

[3] Z.He. Farthest-point heuristic based initialization methods for k-modes
clustering. Dec 2014. doi: 10.1109/TVCG.2014.2346321

[4] M. Sedlmair, C. Heinzl, S. Bruckner, H. Piringer, and T. Mller. Visual
parameter space analysis: A conceptual framework. /EEE Transactions
on Visualization and Computer Graphics, 20(12):2161-2170, Dec 2014.
doi: 10.1109/TVCG.2014.2346321



	Introduction
	Related Work
	Approach
	Implementation
	Results
	Discussion
	Further work
	Who did what

