
VU	Visualization	and	Visual	Data	Analysis	
M4	

	
	
	

	
Wintersemester	2017	

Christoph	C.	H.	Langer	(0500580)	
Jane	Doe	and	John	Doe	

	
	

Disclaimer:		
Although	I	tried	to	meticulously	plan	the	last	2	weeks	of	this	semester	ahead.	I	
thought	the	report	was	due	at	the	weekend	before	the	presentation	and	I	realized	
my	mistake	only	on	Thursday	after	class.	I	am	doing	my	best	to	work	on	my	time	
management	so	this	simple	mistake	feels	particular	annoying	since	I	wanted	to	end	
this	semester	on	a	high	note	and	without	a	declaimer.	Thus	this	report	is	missing	a	
week	of	my	planning	and	this	is	all	I	could	salvage.		
	
A	tableau	dashboard	in	a	.zip	file	accompanies	this	report.	The	final	version	will	also	
be	found	on	http://www.christophlanger.com/vis/	and	it	will	be	updated	before	the	
live-demo	during	the	final	presentation.	

Motivation:	
Visualize	the	parameter	space	of	machine	learning	algorithms	in	particular	Neural	
Networks	for	this	we	conduct	a	pilot	design	study.	

Problem:		
	
There	is	a	lot	of	hype	concerning	neural	networks	and	deep	learning.	However	it	is	
still	not	well	understood	how	to	pick	the	parameters	that	make	them	work	well.	For	
example,	these	questions	are	largely	still	unanswered:		

How	many	layers	should	the	network	have?		
How	many	internal	nodes	should	it	have?		
Which	activation	function	work	best?		
How	should	we	set	the	learning	rate?			
How	do	properties	of	the	underlying	data	influence	the	result?		

Our	idea	is	to	create	an	environment	that	lets	the	user	explore	the	impact	of	such	

parameters in a structured way. We	try	to	give	according	to	Shneiderman's	mantra:	
an	overview,	provide	filtering	and	show	details	on	demand	(zooming	or	in	our	case	
semantic	zooming	is	currently	outside	the	scope	of	M4	but	it	is	planned	in	the	
future).	
	
These	goals	are	hard	to	accomplish	with	existing	standard	tools.	The	difficulty	is	not	
only	to	visualize	this	high	dimensional	data	but	also	to	first	understand	which	
parameters	are	important.	With	this	project	we	can	systematically	explore	the	
individual	parameters	alone	as	well	as	in	combination	using	standard	
dimensionality	reduction	approaches.	
	

Tasks:		
	
A	user	wants	to	get	an	overview	and	understanding,	which	parameters	are	
important	and	in	which	range	they	created	useful	results	and	how	they	impact	
different	quality	metrics	like,	precision,	recall	and	f-measure.	
	
The	parameter	exploration	task	was	split	as	in	[1]	into	following	subtasks.	
Our	current	tool	performs	only	optimization,	fitting,	and	outlier	detection.	
Uncertainty	and	sensitivity	can	not	be	addressed	without	generating	more	data	and	
in	a	different	format,	this	was	discussed	in	more	detail	during	the	M2	report.	
The	partitioning	task	is	only	partially	achieved	in	our	prototype.	We	partition	and	
can	select	according	to	the	output	space.	However	we	would	like	to	be	able	to	do	
this	in	more	details	in	the	next	iteration,	by	looking	at	clusters	of	final	
segmentations	as	in	[8],	looking	at	the	learning	over	behavior	time	using	bundled	
lines	as	in	[4]	or	detecting	different	types	of	network	topology’s	using	a	parallel	
coordinates	as	in	[3].	

	

User:	
	

The user will be anybody who is interested in using or trying to understand
neural networks. This can be student with minimal computer science
background and who is trying to under stand the concepts behind neuronal
networks, up to a senior researcher that tries to gather new insights about the
behavior of neuronal networks or tries to understand how to tune them to his
particular use case. However the use cases described above are similar, both
want to achieve a deeper understanding. Only the level of guidance necessary
and explanations needed to use our tool differ.

	 	

Data:	
	
We	are	using	the	datasets	created	using	a	python	implementation	of	the	online	
demo	created	for	the	CASS	challenge.	[7]		
It	is	based	on	the	web-based	tensor	flow	playground	demo	found	here:	Tensorflow	
Playground	[6].	The	dataset	will	be	extended	during	the	next	iteration	of	this	
project.	
We	are	systematically	looking	at	data	generated	from	the	tensor	flow	playground	
[6].	The	playground	gives	works	on	an	informed	trial	and	error	basis	and	might	
even	be	seen	as	a	local-to-global	view	(i.e.	if	we	play	enough	with	the	individual	
parameters,	we	get	a	rough	understanding	how	they	effect	the	NN).	Our	approach	
however	tries	to	go	a	step	further	and	using	a	large	number	of	precomputed	settings	
(i.e.	with	different	parameters),	we	try	to	give	the	user	a	global-to-local	view.	
	
Before	you	start	visualizing	we	start	with	the	“what“	part	(Munzner	Ch.2	–	What	
Data	abstraction)	and	have	closer	look	at	our	data.		
	
Let	me	divide	in	data	into	3	distinct	parts:	
	
1)	These	attributes	describe	the	data	our	network	is	working	on:	
Attribute	Name	 Attribute	type	 Type	details	 Description	
data	 categorical	 {circle,	gauss,	xor,	

spiral}	
dataset	shape	

noise	 numerical	discrete*	 int:	[0	..	50]	 data	noise	percent	
training_ratio	 numerical	discrete*	 int:	[10	..	90]	 ratio	of	training	to	

test	data	
Remark:	Instead	of	training_ratio	the	actual	training/test	numbers	would	have	been	
more	useful.	Summary	statistic	or	aggregated	values	can	be	calculated	in	later	steps	
-	the	raw	data	should	not	include	these	or	at	least	keep	the	original	values.	
	
2)	Then	we	have	attributes	that	describe	the	parameters	of	our	the	TensorFlow	
neuronal	network,	which	I	would	like	to	subdivide	into	two	further	groups:	
a)	Network	topology	specific	Parameters:	
X1,	X2,	X1Squared,	
X2Squared,	X1X2,	
sinX1,	sinX2	

numerical	 binary	 1	if	the	feature	is	an	
input	to	the	network,	
0	otherwise	

layer_count	 numerical	discrete	 int:	[0	..	6]	 number	of	hidden	
layers	

neuron_count	 numerical	discrete	 int:	[H1	..	H6]	 sum	of	neurons	in	all	
hidden	layers	

H1	..	H6	 numerical	discrete	 int:	[0	..	8]	 number	of	neurons	in	
hidden	layer	1	..	6	

b)	Learning	specific	Parameters:	
learning_rate	 numerical	

discrete*	
float	 learning	rate	

activation	 categorical	 {ReLU,	Tanh,	
Sigmoid,	
Linear}	

activation	function	for	
hidden	layers	

regularization	 categorical	 {None,	L1,	L2}	 regularization	type	
regularization_rate	 numerical	

discrete*	
float	 regularization	rate	

batch_size	 numerical	discrete	 int	 batch	size	
epoch	 numerical	discrete	 int:	{25,	50,	

100,	200,	400}	
epoch	for	which	the	
stats	were	generated	

Remark:	In	the	data	description	epoche	is	called	an	output	but	I	would	argue,	in	the	
way	that	it	is	used	(defined	as	a	strict	cutoff	beforehand	and	not	as	the	result	of	self	
terminating	algorithm)	it	is	more	reasonable	to	call	it	a	learning	specific	parameter	
(i.e	the	time	a	NN	is	allowed	to	learn).	
	
3)	Last	but	not	least	we	have	attributes	that	describe	output	characteristics	of	our	
NN,	these	have	are	all	of	the	numerical	continuous	attribute	type	(respectively	as	
continuous	as	computer	data	can	be).	
	
total_time	 numerical	continuous	 float	 Total	time	at	this	epoch	
mean_time	 numerical	continuous	 float	 Mean	time	per	epoch	
train_loss	 numerical	continuous	 float	 Training	loss	at	epoch	
train_TPR	 numerical	continuous	 float	 True	positive	rate	for	training	data	
train_FPR	 numerical	continuous	 float	 False	positive	rate	for	training	

data	
test_loss	 numerical	continuous	 float	 Test	loss	at	epoch	
test_TPR	 numerical	continuous	 float	 True	positive	rate	for	test	data	
test_FPR	 numerical	continuous	 float	 False	positive	rate	for	test	data	
	 	
Certain	discrete	attributes	are	marked	with	a	star	‘*’.	These	are	not	discrete	per	se	
but	only	due	to	our	need	for	sampling	the	parameter	hyperspace.	In	general	the	
input	parameter	are	very	discrete	or	binned	to	keep	the	numerical	combinations	of	
the	hyperspace	in	check.	
	
We	only	have	TPR	(true	positive	rate)	and	FPR	(false	positive	rate)	and	the	loss.	
Unfortunately	we	do	not	have	the	precession	of	the	data	and	without	any	additional	
information	is	not	possible	to	generate	them	out	of	the	TPR	and	FPR	alone.		
Future	iterations	of	the	simulation	should	output	the	full	confusion	matrix	and	then	
it	is	easy	to	calculate	a	metric	of	our	choice	(e.g	the	1D	F1-Score	and	the	2D	
precision	and	recall	combination).	
	
	 	

	
	
	
	
	

Related	Work:	

Other	visulaziation	solutions:	
Conceptual	design	is	based	on	the	paper:	Visual	Parameter	Space	Analysis:	A	
Conceptual	Framework		[1].	
	
The	solutions	in	the	current	iteration	are	based	on	the	ideas	of	the	author	alone.	So	
far	no	similar	tool	has	been	created	to	view	the	mixture	of	input	parameter	(binary	
categorical	and	numerical	data)	and	to	explicitly	try	to	explore	a	multiple	
dimensional	output	space.	
		 	 	

Any	previous	Ideas	incorperated	into	your	solution:	
	 	 	
The	tool	described	in	this	report	will	be	the	overview	part	and	could	be	the	first	part	
in	a	multitier	analytic	pipeline.	
	
During	the	conceptualization	we	looked	at	[8]	for	a	clustering	of	the	final	output.	
We	looked	at	the	recent	scatter	plot	paper	[5]	for	solutions	to	solve	the	over	plotting	
problem.	
We	took	squares	[3]	as	an	inspiration	to	use	a	parallel	coordinated	based	approach	
to	depict	the	trends	in	network	topology.	
We	looked	at	sliceplorer	[4]	to	view	the	variance	and	general	learning	behavior	of	
groups	of	neuronal	networks.	All	the	ideas	can	be	added	downstream	of	our	
approach	and	were	discussed	in	more	detail	during	M2.	
	

Reference	to	both	acaemic	and	commercial	tools	used.	
Only	Tableau	is	used	in	the	implementation,	however	we	will	switch	for	next	
iteration	to	D3.js.	
	 	
	
	 	

Approach	

Description	of	your	visualization	design	
The	main	element	of	the	design	is	the	scatterplot.	It	is	chosen	to	depict	the	output	
space,	since	they	are	all	numerical	and	continuous.	Further	2-dimensional	
correlation	can	be	depicted.	Through	color	we	have	an	additional	channel	to	depict	a	
3rd	dimension.	Here	the	user	will	have	a	choice	through	a	dropdown	menu	to	either	
show	a	third	dimension	or	directly	depict	a	correlation	of	one	of	the	parameters	to	
the	output	space.	The	user	can	then	chose	a	region	of	interested	and	view	the	
changes	in	the	histograms	of	the	individual	parameters.	Thus	the	user	gets	direct	
feedback	on	the	summary	statistic	of	individual	parameters.	The	user	can	also	
directly	interact	with	the	histograms	to	restrict	a	certain	parameter	to	a	particular	
range	and	see	how	the	output	space	is	changed,	for	example	which	regions	are	not	
covered	anymore.	

Reasons	for	your	design	choices	
One	of	the	still	unsolved	problems	when	working	on	this	project	is	how	many	
graphics	can	one	add	to	dashboard	without	overloading	the	user	with	visual	clutter.		
During	the	design	process	we	removed	all	elements	to	a	minimum.	Thus	the	concept	
is	to	start	with	the	bare	minimum	but	let	the	user	add	elements	later	if	he	likes.		
We	reduced	the	original	dual	scatterplot	to	a	singular	one.	In	a	later	step	the	
scatterplot	may	be	expanded	to	multiples	to	handle	over	plotting	or	the	user	might	
choose	multiple	axis	and	coloring	schemes	to	view	multiple	effects	at	the	same	time.		
These	are	the	only	expandable	and	user	definable	element	in	this	dashboard.	
The	histogram	overview	offers	all	input	parameter	at	a	glance.	This	works	well	for	
categorical	and	numerical	values.	The	current	design	should	also	be	viewable	
without	scrolling.	
Only	after	gaining	an	overview	and	after	filtering	is	provided,	the	user	can	then	
move	on	to	the	next	phase	of	analysis	and	look	at	elements	later	described	but	not	
implemented	in	this	iteration.	(i.e.	the	network	topology	view,	correlation	between	
parameters,	learning	behavior	over	time	and	analysis	of	uncertainty	and	
sensitivity).		
Keeping	the	first	part	simple	lets	us	later	add	new	layers	and	views	in	a	form	of	
sematic	zooming.	

Implementation	

Brief	description	of	how	the	system	was	implemented	(toolkits,	languages,	platforms)	
The	main	bulk	of	the	tool	will	be	implemented	in	tableau	since	this	allows	the	fast	
implementation	of	interactive	applications	and	giving	the	best	general	and	full	
connected	view	of	the	data	without	vastly	exceeding	the	allotted	time	for	this	project.	
In	the	next	iteration	we	switch	to	D3.	

	
I	played	with	the	data	in	Tableau,	tensorflow	-	playground	and	used	the	information	
gathered	during	the	VIS	lecture	and	CASS2017.	

	
If	I	could	restart:	
During	our	book	club	we	got	introduced	to	vega-lite.	I	had	a	quick	look	at	the	basic	
graphs	used	in	my	final	dashboard	and	similar	functionality	is	setup	far	faster	as	in	
in	D3.js	but	on	still	is	far	more	able	to	customized	and	combine	elements	in	a	more	
customizable	fashion.	Many	of	the	implementation	challenges	bellow	could	have	
been	easily	resolved	there.	The	extra	time	in	coding	would	have	been	recuperated	
trying	to	search	through	forums	to	find	a	way	to	solve	problems	that	later	turn	to	be	
out	unsolvable	in	Tableau	anyway.	
Since	this	project	will	not	end	with	this	Tableau	implementation	I	did	not	bother	to	
solve	some	of	the	problems	or	fully	restrict	my	design	space	to	functionality	that	can	
be	achieved	in	tableau.	Further	the	discussions	will	include	many	elements	not	fully	
implemented	in	the	tableau	environment	yet	and	will	show	proof	of	concepts	for	the	
next	iteration	in	D3.js.	
If	we	want	a	quick	standard	figure,	I	would	compare	Tableau	to	Excel	for	drawing	
graphs	and	gg-plot	to	vega-lite.	I	would	only	create	very	basics	plots	with	Excel	and	
only	if	I	know	the	default	forming	and	settings	are	roughly	enough,	if	I	want	
anything	of	higher	production	value	or	a	reasonable	important	report	I	would	
switch	to	gg-plot	since	the	initial	higher	time	invested	to	setup	the	graph,	is	easily	
recuperated	if	I	need	multiple	similar	ones	with	different	data	and	when	I	want	to	
edit	its	appearance	to	my	personal	choice.	Since	here	I	can	interact	in	a	far	more	
structured	way	and	do	not	have	to	click	and	find	the	settings	in	obscure	and	version	
dependent	menus.		

Any	serious	implementation	challenges	you	encountered	and	how	you	handled	them	
As	described	above	most	of	the	challenges	involved	limitations	of	tableau.	
Relative	to	filtering	values	and	multiple	filtering:	If	one	uses	multiple	elements	and	
switches	between	multiple	elements	filter	selection	can	become	stuck	and	can	not	
be	removed	with	the	usual	interactions.	(have	to	be	deleted	on	the	corresponding	
sheets	themselves,	since	the	dashboard	has	a	huge	number	of	linked	sheets	finding	
them	is	very	tedious).	Moving	the	dashboard	onto	the	web	(Tableau	Public)	
mitigates	this	by	being	able	to	simply	refreshing	the	Page	thus	reload	the	Dashboard	
with	the	default	parameters,	however	any	progress	and	settings	so	fare	are	lost.	
Further	the	direct	interaction	with	the	filtered/not	filtered	data	efficiently	was	not	
possible,	it	was	impossible	to	display	the	relative	changes	in	the	histograms	created	
by	parameter	or	output	space	selection.	Since	only	the	final	number	after	filtering	is	
accessible.	
Selecting	Multiple	bars,	the	original	concepts	of	using	the	histograms	as	scented	
widgets	was	nice	however	only	a	singular	bucket	can	be	selected	thus	normal	
sliders	had	to	be	added	to	achieve	the	result	originally	intended,	this	sorts	of	
interaction	can	far	better	be	achieved	in	D3.js	
Selecting	regions	in	the	output	space:	only	square	regions	can	be	selected	this	can	
not	be	changed.	
Url	rules:	are	very	restrictive	you	can	not	choose	which	of	the	multiple	web-site	
containers	in	a	dashboard	is	target,	this	is	only	performed	for	the	first	one.	This	is	
annoying	if	you	have	multiple	however	over	or	even	clickable	events	to	happen	in	

one	dashboard.	Like	showing	help	features	in	on	web-site	containers,	and	showing	
the	a	resolution	of	for	example	the	image	path	by	hovering	over	the	a	particular	
point	in	the	scatterplot.	This	was	resolved	by	removing	the	detailed	image	view	of	a	
data	point	upon	hover,	the	final	dashboard	has	now	a	static	image	as	placeholder.	
The	detailed	explanation	upon	hovering	of	elements	and	help	question	was	added	
instead	since	this	was	asked	by	most	early	testers	and	would	have	been	necessary	to	
work	with	the	tool	without	any	prior	explanations.	
Scatterplot:	
Scatterplots	come	as	is,	over	plotting	is	a	real	problem	shown	by	a	graphic	in	M2	
that	adds	histograms	to	the	axis.				
A	recent	paper	about	scatterplot	[5]	addresses	many	issues	however	none	of	the	
concepts	can	be	implemented	in	tableau.	On	of	the	ideas	I	played	with	was	using	
alpha	blending	to	show	the	overall	level	of	over-plotting	but	this	does	not	work	with	
multiple	colors	thus	the	colors	were	separated	in	multiple	juxtapose,	however	since	
filters	are	again	connected	and	can	not	be	individually	applied	to	individual	sheets	
individual	this	is	not	in	the	final	result	but	instead	I	show	a	stitched	together	
screenshot	that	proves	this	concept	[SCREENSHOT]	
Reloading	Parameters:	No	efficient	way	to	save	and	reload	parameters	were	
possible.	Future	D3.js	implementations	will	created	savable	JSON-files	that	can	be	
saved	and	loaded	for	better	comparison	in	downstream	elements	of	our	tool	as	well	
the	possibility	to	easily	save	interesting	findings	and	share	them	since	only	the	
filtered	data	output	could	be	accessed	and	saved	over	the	Tableau-API.	
Full	tool:	Too	many	shortcoming	of	the	tableau	framework	were	identified,	thus	
polishing	the	tool	to	have	production	value	was	omitted	because	of	time		efficiently	
and	instead	the	implementation	in	D3.js	was	started.	The	life	demo	during	the	
presentation	will	show	a	carful	chosen	path	through	the	program	and	two	use	cases.	
The	Tableau	implementation	thus	is	not	ready	for	extensive	and	unsupervised	beta-
testing.	This	will	also	not	be	resolve	in	this	implementation.	

Results	

Scenario(s)	of	use,	including	screen	shots	of	the	system	being	used:	
Two	scenarios	that	came	up	by	the	user	were:	
A)	getting	an	overview	of	a	certain	subsection	of	the	output	space	–	how	this	
influences	the	parameter	choices	i.e	which	parameters	will	lead	to	this	result.	
B)	Filtering	according	to	a	particular	feature	and	directly	view	how	the	output	space	
would	be	effected,	meaning	people	wanted	to	see	how	the	multiple	dimensional	
output	space	is	affected	by	restricting	a	particular	parameter.	

Performance	of	the	system:	
The	overall	performance	on	the	100.000	item	dataset	was	rather	slow,	the	2-4	
second	lag	when	readjusting	the	filtering	was	perceived	as	a	major	annoyance	by	
the	first	testers.	Since	the	final	product	will	include	an	even	bigger	dataset	and	the	
overall	performance	of	tableau	is	not	really	influence	able	performance,	
reimplementation	in	a	different	framework	will	be	necessary.	

Filtering	takes	for	ever	–	not	smooth	enough	for	final	production	tool.	

Feedback	from	the	evaluations	about	the	design	and	functionality	of	your	tool:	
	
Feedback	of	the	design	and	functionality	was	gathered	by	friends	and	roommates,	
since	the	prototype	is	still	very	rudimentary.		Explanations	were	given,	slight	
steering	was	performed	when	a	functionality	did	not	match	the	expected	behavior	
during	their	testing.	However	one	of	the	problems	that	still	exist	was	that	how	to	
interact	and	what	they	interacted	was	not	clear	from	the	beginning	the	tool	will	
need	a	description	like	tensor	flow	has	at	the	bottom	but	a	general	feedback	was	
that	an	help	or	info	buttons	that	explained	the	functionally	on	hovering	over	
elements	or	made	visible	by	clicking	on	tiny	info	buttons	would	have	been	nice.		
This	will	defiantly	implemented	in	a	later	iteration.	One	of	the	simplest	ways	to	do	
this	will	be	done	up	to	the	final	presentation.	The	implementations	in	tableau	will	be	
a	url-action	that	displays	this	kind	of	information	into	a	web-page	container	on	the	
dashboard	upon	hovering	over	and	clicking	on	certain	elements.	
When	asked	what	conclusion	they	achieved	concerning	the	output	space,	the	data	
and	the	parameter	space,	3	out	of	4	came	up	with	feasible	but	also	non	overlapping	
novel	insights.	
Further	a	way	to	store	the	settings	of	the	filters	and	easily	with	between	two	of	them	
or	display	the	results	in	juxtaposition	was	asked	4	out	of	4	for	as	well	as	the	
question,	further	2	out	of	4	if	it	is	possible	to	output	the	a	subset	of	results	and	
browse	through	them	and	visualize	what	happened	here	like	on	tensorflow.	
Last	but	not	least	2	out	of	4	users	asked	if	it	would	be	possible	to	switch	the	data	
that	created	the	output	space	as	well	as	the	coloring.	This	shows	that	my	initial	
guess	how	the	user	would	intuitively	want	to	interact	with	this	tool	and	this	feature	
will	have	a	high	priority	when	going	through	the	next	iteration.	
1	out	of	4	asked	for	additional	summary	statistics	value,	he	wanted	the	ability	to	
quantify	the	perceptual	change	created	by	interacting	with	our	tool	

Discussion	

Strengths	and	weaknesses	of	your	approach	and	implementation	
Strengths:	The	solution	is	broken	down	into	very	basic	and	simply	understandable	
elements.	The	solution	can	be	easily	expanded	and	used	as	the	staring	point	for	
semantic	zooming.	A	number	of	alternatives	were	looked	at	and	considered	during	
the	initial	testing	phase.	The	current	concept	produced	a	number	of	important	
insights,	which	are	not	part	of	the	current	implementation	but	are	crucial	for	the	
next	iteration.	
Weaknesses:	Many	of	the	original	ideas	were	dropped	due	to	inability	to	implement	
them	in	tableau.	However	a	reasonable	partition	of	the	project	was	achieved.	The	
current	setup	helped	to	create	a	rough	idea	what	the	real	prototype	would	need.	
Future	steps	were	identified	

Lessons	you	learned:	
• Project	management.	During	the	last	semester	with	multiple	lectures,	I	ran	in	

a	general	time	management	problem.	Some	were	due	to	my	very	naïve	
estimation	of	work	effort	and	my	drive	to	achieve	something	far	better	then	
reasonable	in	the	allotted	time.	Further	I	simply	discounted	that	I	was	
working	alone	on	the	project	and	went	for	something	too	ambitious	and	
partitioned	the	project	badly.	I	worked	on	to	many	problems	and	looked	at	to	
many	different	aspects	right	form	the	beginning.	I	also	underestimated	how	
much	effort	and	work	a	design	study	entails.	Further	many	of	the	subtask	I	
originally	created	for	myself	could	have	been	3-man	projects	on	their	own	as	
it	later	turns	out.		

• Even	simple	tasks	like	a	designing	a	scatterplot,	can	turn	out	to	be	a	far	more	
complex	problem	as	[5]	shows.	

• Tableau	is	only	a	tool	to	generate	a	quick	overview	of	the	data.	I	would	not	
use	it	again	to	create	a	prototype	of	a	visualization	tool	unless	one	can	and	
wants	to	reduce	the	design	to	something	very	basic.	

• Final	report	testing	and	setting	up	a	version	for	a	live	demo	takes	at	least	2	
full	weeks,	loosing	one	them	to	a	planning	error	is	not	reparable.	

• The	perfect	tool	for	rapid	prototyping	would	be	a	library	that	produces	quick	
D3	implantations	for	default	graph	types.	This	tool	would	be	like	a	website	
builder,	with	which	one	can	rapidly	create	a	good	looking	and	working	web-
page	but	can	still	inspect	and	modify	the	individual	elements	to	ones	liking	if	
necessary.	

• The	Tableau	API	basically	only	lets	you	interact	with	the	input	and	output	of	
the	Dashboard,	however	it	does	not	let	you	modify	and	interact	with	
anything	happening	within	tableau.	These	restrictions	have	to	be	taken	into	
consideration	earlier	when	planning	the	whole	design	of	a	tool.	

• This	project	is	a	very	good	example,	why	working	with	new	tools	and	
frameworks	is	a	very	dangerous	endeavor	on	a	tight	time	budget.	Further	it	
shows	that	after	2	month	of	development	the	whole	system	might	need	to	be	
completely	re-implemented	and	re-designed.	

• Many	concept	of	visualization	and	the	exploration	of	the	data	during	this	
project	are	of	great	importance	for	the	next	iteration.	

	

A	clear	separation	of	tasks	between	the	group	members:	you	
have	to	detail	who	did	what	for	this	milestone.	
	
Christoph	Langer	did	everything.	

References:	
	

[1]	 M.	Sedlmair,	C.	Heinzl,	S.	Bruckner,	H.	Piringer,	and	T.	Oller,	“Visual	
Parameter	Space	Analysis:	A	Conceptual	Framework,”	IEEE	Trans.	Vis.	Comput.	
Graph.,	vol.	20,	no.	12,	2014.	
[2]	 T.	Munzner,	Visualization	Analysis	and	Design.	2014.	
[3]	 D.	Ren,	S.	Amershi,	B.	Lee,	J.	Suh,	and	J.	D.	Williams,	“Squares:	Supporting	
Interactive	Performance	Analysis	for	Multiclass	Classifiers,”	IEEE	Trans.	Vis.	Comput.	
Graph.,	vol.	23,	no.	1,	pp.	61–70,	2017.	
[4]	 T.	Torsney-Weir,	M.	Sedlmair,	and	T.	Möller,	“Sliceplorer:	1D	slices	for	multi-
dimensional	continuous	functions,”	Comput.	Graph.	Forum,	vol.	36,	no.	3,	pp.	167–
177,	2017.	
[5] A. Sarikaya, S. Member, and M. Gleicher, “Scatterplots : Tasks , Data , and
Designs,” vol. 24, no. 1, pp. 402–412, 2018.
[6] Daniel	Smilkov	and	Shan	Carte:	http://playground.tensorflow.org/
[7]	 Visualization	assignment	for	2017	Czech-Austrian	Summer	School	on	"Deep	
Learning	and	Visual	Data	Analysis":	https://github.com/hyounesy/cass2017_vis
[8] B. Fröhler, T. Möller, and C. Heinzl, “GEMSe: Visualization-Guided Exploration
of Multi-channel Segmentation Algorithms,” Comput. Graph. Forum, vol. 35, no. 3, pp.
191–200, 2016.

