Schedule

1 Oct 3 / 4 Introduction (CP) pdf Basics (TM) pdf
Chapter 1 (Bishop)
2 Oct 10 / 11 Basics (TM) (cont.) pdf
Chapter 1 (Bishop)
Linear Models for Regression (TTW) pdf
Chapter 3 (Bishop)
Oct 11 A0 Due: Mathematical Prerequisites
3 Oct 17 / 18 Advanced Regression (TTW) pdf
Chapter 3 (Bishop)
Linear models for classification (TTW) pdf
Chapter 4 (Bishop) or Chapter 4 (Hastie et al.)
4 Oct 24 / 25 Python tutorial moodle
Linear models for classification (TM) (cont.) pdf
Chapter 4 (Bishop) or Chapter 4 (Hastie et al.)
5 Oct 31 / Nov 1 Linear models for classification (TM) (cont.) pdf
Chapter 4 (Bishop) or Chapter 4 (Hastie et al.)
All Saint's Day
Oct 31 A1 Due: Lab Regression
6 Nov 7 / 8 Neural networks (TTW) orig pdf new pdf
Chapter 5 (Bishop) or Chapter 11 (Hastie et al.)
Kernel methods (TTW) pdf
Chapter 6 (Bishop)
7 Nov 14/ 15 Sparse kernel machines (TM) pdf
Chapter 7 (Bishop) or Chapter 12 (Hastie et al.)
Sparse kernel machines (TTW) (cont.) pdf
Chapter 7 (Bishop) or Chapter 12 (Hastie et al.)
8 Nov 21 / 22 Graphical models (TTW) pdf
Chapter 8 [8.1, 8.2] (Bishop) or Chapter 17 (Hastie et al.)
Preparation midterm exam
Nov 22 A2 Due: Pen & Paper 1
9 Nov 28/ 29 Ethics of machine learning (TTW) Midterm exam
10 Dec 5 / 6 Association Analysis -- Part 1 (CP) pdf
Association Analysis -- Part 2 (CP) pdf
Dec 5 A3 Due: Lab Classification
11 Dec 12 / 13 Dimensionality Reduction (KS) pdf
Clustering (CP) pdf
Dec 19 / 20 Merry Christmas! Merry Christmas!
Dec 26 / 27 Merry Christmas! Merry Christmas!
Jan 2 / 3 Happy New Year! Happy New Year!
12 Jan 9 / 10 Clustering (CP) pdf
Clustering (CP) pdf
Discussion Lab (CH)
Jan 9 A4 Due: Lab Clustering
13 Jan 16 / 17 Clustering (CP) pdf
Clustering (CP) pdf
14 Jan 23 / 24 Outlier Detection (CP) pdf
Discussion Pen & Paper (BS)
Outlier Detection (CP) pdf
Preparation final exam
Jan 23 A5 Due: Pen & Paper 2
15 Jan 30 / 31 Outlook Final exam
no lecture subject to modifications due