Schedule

1 Mar 06 / 07 Introduction (CP) pdf Basics (TM) pdf
Chapter 1 (Bishop)
2 Mar 13 / 14 Basics (TTW) (cont.) pdf
Chapter 1 (Bishop)
Linear Models for Regression (TTW) pdf
Chapter 3 (Bishop)
Mar 14 A0 Due: Mathematical Prerequisites
Mar 15 Python Tutorial 9:45–11:15, OMP, HS13
[resources.zip] [code.zip] [Data analysis] [Image processing + numpy]
3 Mar 20 / 21 Advanced Regression (TTW) pdf
Chapter 3 (Bishop)
Linear models for classification (TTW) pdf
Chapter 4 (Bishop) or Chapter 4 (Hastie et al.)
4 Mar 27 / 28 Linear models for classification (TTW) (cont.) pdf
Chapter 4 (Bishop) or Chapter 4 (Hastie et al.)
Linear models for classification (TTW) (cont.) pdf
Chapter 4 (Bishop) or Chapter 4 (Hastie et al.)
5 Apr 03 / 04 Neural networks (TTW) pdf
Chapter 5 (Bishop) or Chapter 11 (Hastie et al.)
Intro to learning theory (MGW)
Apr 04 L1 Due: Regression Lab
6 Apr 10 / 11 VC-dimension (MGW) Decision trees / model validation (MGW)
7 Apr 17 / 18 Easter (No class) Easter (No class)
8 Apr 24 / 25 Easter (No class) Easter (No class)
9 May 01 / 02 Staatsfeiertag (No class) Graphical models (TTW) pdf
Chapter 8 [8.1, 8.2] (Bishop) or Chapter 17 (Hastie et al.)
May 06 L2 Due: Classification Lab
10 May 08 / 09 Kernel methods (TM) pdf
Chapter 6 (Bishop)
Sparse kernel machines (TM) pdf
Chapter 7 (Bishop) or Chapter 12 (Hastie et al.)
May 09 Due: Pen and paper 1
11 May 15 / 16 Sparse kernel machines (TM) (cont.) pdf
Chapter 7 (Bishop) or Chapter 12 (Hastie et al.)
Midterm exam
12 May 22 / 23 Association Analysis -- Part 1 (CP) pdf
Clustering -- Part 1 (CP) pdf
13 May 29 / 30 Dimensionality Reduction -- Part 1 (CP) pdf
Ascension day (No class)
14 Jun 05 / 06 Clustering -- Part 2 (CP) pdf
Clustering -- Part 3 (CP) pdf
15 Jun 12 / 13 Outlier Detection -- Part 1 (CP) pdf
Association Analysis -- Part 2 (CP)
Jun 13 L3 Due: Clustering lab
16 Jun 19 / 20 Discussion Lab 3 + Pen and Paper 2 No class
Jun 19 Due: Pen and paper 2
17 Jun 26 / 27 Outlier Detection -- Part 2 (CP) Final exam
no lecture subject to modifications due